These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 32949614)

  • 1. Numerical analysis on the hygrothermal behavior of building envelope according to CLT wall assembly considering the hygrothermal-environmental zone in Korea.
    Chang SJ; Yoo J; Wi S; Kim S
    Environ Res; 2020 Dec; 191():110198. PubMed ID: 32949614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical Evaluation of the Hygrothermal Performance of a Capillary Active Internal Wall Insulation System under Different Internal Conditions.
    Kaczorek D
    Materials (Basel); 2022 Mar; 15(5):. PubMed ID: 35269093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental Analysis of Moisture-Dependent Thermal Conductivity, and Hygric Properties of Novel Hemp-shive Insulations with Numerical Assessment of Their In-Built Hygrothermal and Energy Performance.
    Latif E
    Materials (Basel); 2024 Jan; 17(2):. PubMed ID: 38276425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Insulated Wall Systems with Exterior Insulation of Polyisocyanurate under Different Facer Materials: Material Characterization and Long-Term Hygrothermal Performance Assessment.
    Iffa E; Tariku F; Simpson WY
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32751481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hygrothermal climate analysis: An Australian dataset.
    Brambilla A; Javed H; Strang M
    Data Brief; 2022 Jun; 42():108291. PubMed ID: 35647236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hygrothermal Performance of Salt (NaCl) for Internal Surface Applications in the Building Envelope.
    Pungercar V; Musso F
    Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The moisture distribution in wall-to-floor thermal bridges and its influence on mould growth.
    Xue Y; Fan Y; Lu J; Ge J
    UCL Open Environ; 2022; 4():e042. PubMed ID: 37228471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Climate data for hygrothermal simulations of Brussels.
    Vandemeulebroucke I; Caluwaerts S; Van Den Bossche N
    Data Brief; 2022 Oct; 44():108491. PubMed ID: 36034638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hygrothermal monitoring of replacement infill panels for historic timber-frame buildings: initial findings.
    Whitman CJ; Prizeman O; Walker P; McCaig I; Rhee-Duverne S
    UCL Open Environ; 2022; 4():e039. PubMed ID: 37228460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of hygrothermal performance of wood-derived biocomposite with biochar in response to climate change.
    Jeon J; Park JH; Yuk H; Kim YU; Yun BY; Wi S; Kim S
    Environ Res; 2021 Feb; 193():110359. PubMed ID: 33127398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural health monitoring data collected during construction of a mass-timber building with a data platform for analysis.
    Baas EJ; Riggio M; Barbosa AR
    Data Brief; 2021 Apr; 35():106845. PubMed ID: 33665247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hygrothermal Behavior of a Washing Fines-Hemp Wall under French and Tunisian Summer Climates: Experimental and Numerical Approach.
    Boumediene N; Collet F; Prétot S; Elaoud S
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35161048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hygric Behavior of Viticulture By-Product Composites for Building Insulation.
    Badouard C; Maalouf C; Bliard C; Polidori G; Bogard F
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Humidity control effect of vapor-permeable walls employing hygroscopic insulation material.
    Lee H; Ozaki A; Lee M; Yamamoto T
    Indoor Air; 2020 Mar; 30(2):346-360. PubMed ID: 31710390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of biochar-mortar composite as a humidity control material to improve the building energy and hygrothermal performance.
    Park JH; Kim YU; Jeon J; Yun BY; Kang Y; Kim S
    Sci Total Environ; 2021 Jun; 775():145552. PubMed ID: 33611181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal, hygric, and environmental performance evaluation of thermal insulation materials for their sustainable utilization in buildings.
    Wi S; Park JH; Kim YU; Yang S; Kim S
    Environ Pollut; 2021 Mar; 272():116033. PubMed ID: 33261959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hygrothermal and Acoustical Performance of Starch-Beet Pulp Composites for Building Thermal Insulation.
    Karaky H; Maalouf C; Bliard C; Moussa T; El Wakil N; Lachi M; Polidori G
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30189650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of recycled ceramic-based inorganic insulation for improving energy efficiency and flame retardancy of buildings.
    Wi S; Yang S; Berardi U; Kim S
    Environ Int; 2019 Sep; 130():104900. PubMed ID: 31280051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hygrothermal Properties and Performance of Bio-Based Insulation Materials Locally Sourced in Sweden.
    Ranefjärd O; Strandberg-de Bruijn PB; Wadsö L
    Materials (Basel); 2024 Apr; 17(9):. PubMed ID: 38730828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitigation of CO2 emissions from the EU-15 building stock: beyond the EU Directive on the Energy Performance of Buildings.
    Petersdorff C; Boermans T; Harnisch J
    Environ Sci Pollut Res Int; 2006 Sep; 13(5):350-8. PubMed ID: 17067030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.