These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 32949692)
1. Detect differentially methylated regions using non-homogeneous hidden Markov model for bisulfite sequencing data. Chen Y; Kwok CK; Jiang H; Fan X Methods; 2021 May; 189():34-43. PubMed ID: 32949692 [TBL] [Abstract][Full Text] [Related]
2. Detect differentially methylated regions using non-homogeneous hidden Markov model for methylation array data. Shen L; Zhu J; Robert Li SY; Fan X Bioinformatics; 2017 Dec; 33(23):3701-3708. PubMed ID: 29036320 [TBL] [Abstract][Full Text] [Related]
3. A Bayesian hidden Markov model for detecting differentially methylated regions. Ji T Biometrics; 2019 Jun; 75(2):663-673. PubMed ID: 30443900 [TBL] [Abstract][Full Text] [Related]
4. A hidden markov model for identifying differentially methylated sites in bisulfite sequencing data. Shokoohi F; Stephens DA; Bourque G; Pastinen T; Greenwood CMT; Labbe A Biometrics; 2019 Mar; 75(1):210-221. PubMed ID: 30168593 [TBL] [Abstract][Full Text] [Related]
5. LuxHMM: DNA methylation analysis with genome segmentation via hidden Markov model. Malonzo MH; Lähdesmäki H BMC Bioinformatics; 2023 Feb; 24(1):58. PubMed ID: 36810075 [TBL] [Abstract][Full Text] [Related]
6. DMRFusion: A differentially methylated region detection tool based on the ranked fusion method. Yassi M; Shams Davodly E; Mojtabanezhad Shariatpanahi A; Heidari M; Dayyani M; Heravi-Moussavi A; Moattar MH; Kerachian MA Genomics; 2018 Nov; 110(6):366-374. PubMed ID: 29309841 [TBL] [Abstract][Full Text] [Related]
7. HMM-Fisher: identifying differential methylation using a hidden Markov model and Fisher's exact test. Sun S; Yu X Stat Appl Genet Mol Biol; 2016 Mar; 15(1):55-67. PubMed ID: 26854292 [TBL] [Abstract][Full Text] [Related]
8. HMM-DM: identifying differentially methylated regions using a hidden Markov model. Yu X; Sun S Stat Appl Genet Mol Biol; 2016 Mar; 15(1):69-81. PubMed ID: 26887041 [TBL] [Abstract][Full Text] [Related]
9. Detection of differentially methylated regions in whole genome bisulfite sequencing data using local Getis-Ord statistics. Wen Y; Chen F; Zhang Q; Zhuang Y; Li Z Bioinformatics; 2016 Nov; 32(22):3396-3404. PubMed ID: 27493194 [TBL] [Abstract][Full Text] [Related]
10. Detection of differentially methylated regions from bisulfite-seq data by hidden Markov models incorporating genome-wide methylation level distributions. Saito Y; Mituyama T BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S3. PubMed ID: 26681544 [TBL] [Abstract][Full Text] [Related]
12. A Bayesian Approach for Analysis of Whole-Genome Bisulfite Sequencing Data Identifies Disease-Associated Changes in DNA Methylation. Rackham OJ; Langley SR; Oates T; Vradi E; Harmston N; Srivastava PK; Behmoaras J; Dellaportas P; Bottolo L; Petretto E Genetics; 2017 Apr; 205(4):1443-1458. PubMed ID: 28213474 [TBL] [Abstract][Full Text] [Related]
13. Software updates in the Illumina HiSeq platform affect whole-genome bisulfite sequencing. Toh H; Shirane K; Miura F; Kubo N; Ichiyanagi K; Hayashi K; Saitou M; Suyama M; Ito T; Sasaki H BMC Genomics; 2017 Jan; 18(1):31. PubMed ID: 28056787 [TBL] [Abstract][Full Text] [Related]
14. Bisulfighter: accurate detection of methylated cytosines and differentially methylated regions. Saito Y; Tsuji J; Mituyama T Nucleic Acids Res; 2014 Apr; 42(6):e45. PubMed ID: 24423865 [TBL] [Abstract][Full Text] [Related]
15. DMRfinder: efficiently identifying differentially methylated regions from MethylC-seq data. Gaspar JM; Hart RP BMC Bioinformatics; 2017 Nov; 18(1):528. PubMed ID: 29187143 [TBL] [Abstract][Full Text] [Related]
16. A full Bayesian partition model for identifying hypo- and hyper-methylated loci from single nucleotide resolution sequencing data. Wang H; He C; Kushwaha G; Xu D; Qiu J BMC Bioinformatics; 2016 Jan; 17 Suppl 1(Suppl 1):7. PubMed ID: 26818685 [TBL] [Abstract][Full Text] [Related]
17. A comprehensive evaluation of alignment software for reduced representation bisulfite sequencing data. Sun X; Han Y; Zhou L; Chen E; Lu B; Liu Y; Pan X; Cowley AW; Liang M; Wu Q; Lu Y; Liu P Bioinformatics; 2018 Aug; 34(16):2715-2723. PubMed ID: 29579198 [TBL] [Abstract][Full Text] [Related]
18. Detection of significantly differentially methylated regions in targeted bisulfite sequencing data. Hebestreit K; Dugas M; Klein HU Bioinformatics; 2013 Jul; 29(13):1647-53. PubMed ID: 23658421 [TBL] [Abstract][Full Text] [Related]
19. A Bayesian hierarchical model to detect differentially methylated loci from single nucleotide resolution sequencing data. Feng H; Conneely KN; Wu H Nucleic Acids Res; 2014 Apr; 42(8):e69. PubMed ID: 24561809 [TBL] [Abstract][Full Text] [Related]
20. CpG_MPs: identification of CpG methylation patterns of genomic regions from high-throughput bisulfite sequencing data. Su J; Yan H; Wei Y; Liu H; Liu H; Wang F; Lv J; Wu Q; Zhang Y Nucleic Acids Res; 2013 Jan; 41(1):e4. PubMed ID: 22941633 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]