BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 32949697)

  • 1. Transcriptome analysis reveals the genetic basis of skeletal muscle glycolytic potential based on a pig model.
    Wu W; Zhang Z; Chao Z; Li B; Li R; Jiang A; Kim KH; Liu H
    Gene; 2021 Jan; 766():145157. PubMed ID: 32949697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes of the activities of glycolytic and oxidative enzymes before and after slaughter in the longissimus muscle of Pietrain and Duroc pigs and a Duroc-Pietrain crossbreed.
    Werner C; Natter R; Wicke M
    J Anim Sci; 2010 Dec; 88(12):4016-25. PubMed ID: 20675600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The application of biosensors for drip loss analysis and glycolytic potential evaluation.
    Przybylski W; Sionek B; Jaworska D; Santé-Lhoutellier V
    Meat Sci; 2016 Jul; 117():7-11. PubMed ID: 26930360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of differentially expressed genes in longissimus dorsi muscle between Wei and Yorkshire pigs using RNA sequencing.
    Xu J; Wang C; Jin E; Gu Y; Li S; Li Q
    Genes Genomics; 2018 Apr; 40(4):413-421. PubMed ID: 29892843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationships between longissimus glycolytic potential and swine growth performance, carcass traits, and pork quality.
    Hamilton DN; Miller KD; Ellis M; McKeith FK; Wilson ER
    J Anim Sci; 2003 Sep; 81(9):2206-12. PubMed ID: 12968695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of fasting and transportation on pork quality development and extent of postmortem metabolism.
    Leheska JM; Wulf DM; Maddock RJ
    J Anim Sci; 2002 Dec; 80(12):3194-202. PubMed ID: 12542160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation between three glycometabolic-related hormones and muscle glycolysis, as well as meat quality, in three pig breeds.
    Luo J; Shen YL; Lei GH; Zhu PK; Jiang ZY; Bai L; Li ZM; Tang QG; Li WX; Zhang HS; Zhu L
    J Sci Food Agric; 2017 Jul; 97(9):2706-2713. PubMed ID: 27743386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of muscle fiber type on glycolytic potential and meat quality traits in different Tibetan pig muscles and their association with glycolysis-related gene expression.
    Shen LY; Luo J; Lei HG; Jiang YZ; Bai L; Li MZ; Tang GQ; Li XW; Zhang SH; Zhu L
    Genet Mol Res; 2015 Nov; 14(4):14366-78. PubMed ID: 26600496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential Transcriptome Analysis of Early Postnatal Developing Longissimus Dorsi Muscle from Two Pig Breeds Characterized in Divergent Myofiber Traits and Fatness.
    Xu X; Mishra B; Qin N; Sun X; Zhang S; Yang J; Xu R
    Anim Biotechnol; 2019 Jan; 30(1):63-74. PubMed ID: 29471750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of available dietary carbohydrate and preslaughter treatment on glycolytic potential, protein degradation, and quality traits of pig muscles.
    Bee G; Biolley C; Guex G; Herzog W; Lonergan SM; Huff-Lonergan E
    J Anim Sci; 2006 Jan; 84(1):191-203. PubMed ID: 16361507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic control of longissimus dorsi muscle gene expression variation and joint analysis with phenotypic quantitative trait loci in pigs.
    Velez-Irizarry D; Casiro S; Daza KR; Bates RO; Raney NE; Steibel JP; Ernst CW
    BMC Genomics; 2019 Jan; 20(1):3. PubMed ID: 30606113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimated frequency of the RN- allele in Swedish Hampshire pigs and comparison of glycolytic potential, carcass composition, and technological meat quality among Swedish Hampshire, Landrace, and Yorkshire pigs.
    Enfält AC; Lundström K; Karlsson A; Hansson I
    J Anim Sci; 1997 Nov; 75(11):2924-35. PubMed ID: 9374306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of differentially expressed genes in early-postmortem Semimembranosus muscle of Italian Large White heavy pigs divergent for glycolytic potential.
    Davoli R; Vegni J; Cesarani A; Dimauro C; Zappaterra M; Zambonelli P
    Meat Sci; 2022 May; 187():108754. PubMed ID: 35158160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hand-held lactate analyzer as a tool for the real-time measurement of physical fatigue before slaughter and pork quality prediction.
    Rocha LM; Dionne A; Saucier L; Nannoni E; Faucitano L
    Animal; 2015 Apr; 9(4):707-14. PubMed ID: 25399703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative transcriptome analysis of longissimus dorsi muscle reveal potential genes affecting meat trait in Chinese indigenous Xiang pig.
    Wang W; Wang D; Zhang X; Liu X; Niu X; Li S; Huang S; Ran X; Wang J
    Sci Rep; 2024 Apr; 14(1):8486. PubMed ID: 38605105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early postmortem gene expression and its relationship to composition and quality traits in pig Longissimus dorsi muscle.
    Cánovas A; Varona L; Burgos C; Galve A; Carrodeguas JA; Ibáñez-Escriche N; Martín-Burriel I; López-Buesa P
    J Anim Sci; 2012 Oct; 90(10):3325-36. PubMed ID: 22665633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptomics Analysis on Excellent Meat Quality Traits of Skeletal Muscles of the Chinese Indigenous Min Pig Compared with the Large White Breed.
    Liu Y; Yang X; Jing X; He X; Wang L; Liu Y; Liu D
    Int J Mol Sci; 2017 Dec; 19(1):. PubMed ID: 29271915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptome analysis reveals that constant heat stress modifies the metabolism and structure of the porcine longissimus dorsi skeletal muscle.
    Hao Y; Feng Y; Yang P; Cui Y; Liu J; Yang C; Gu X
    Mol Genet Genomics; 2016 Dec; 291(6):2101-2115. PubMed ID: 27561287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of key microRNAs affecting drip loss in porcine longissimus dorsi by RNA-Seq.
    Wei W; Li B; Liu K; Jiang A; Dong C; Jia C; Chen J; Liu H; Wu W
    Gene; 2018 Mar; 647():276-282. PubMed ID: 29320759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Whole-transcriptome Analysis of Fully Viable Energy Efficient Glycolytic-null Cancer Cells Established by Double Genetic Knockout of Lactate Dehydrogenase A/B or Glucose-6-Phosphate Isomerase.
    Mazzio E; Badisa R; Mack N; Cassim S; Zdralevic M; Pouyssegur J; Soliman KFA
    Cancer Genomics Proteomics; 2020; 17(5):469-497. PubMed ID: 32859627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.