These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
358 related articles for article (PubMed ID: 32949814)
21. Top-Down Proteomics Applied to Human Cerebrospinal Fluid. Gay M; Sánchez-Jiménez E; Villarreal L; Vilanova M; Huguet R; Arauz-Garofalo G; Díaz-Lobo M; López-Ferrer D; Vilaseca M Methods Mol Biol; 2019; 2044():193-219. PubMed ID: 31432414 [TBL] [Abstract][Full Text] [Related]
22. Toward an Optimized Workflow for Middle-Down Proteomics. Cristobal A; Marino F; Post H; van den Toorn HW; Mohammed S; Heck AJ Anal Chem; 2017 Mar; 89(6):3318-3325. PubMed ID: 28233997 [TBL] [Abstract][Full Text] [Related]
23. Top Down Proteomics Reveals Mature Proteoforms Expressed in Subcellular Fractions of the Echinococcus granulosus Preadult Stage. Lorenzatto KR; Kim K; Ntai I; Paludo GP; Camargo de Lima J; Thomas PM; Kelleher NL; Ferreira HB J Proteome Res; 2015 Nov; 14(11):4805-14. PubMed ID: 26465659 [TBL] [Abstract][Full Text] [Related]
24. Proteomic Detection and Validation of Translated Small Open Reading Frames. Khitun A; Slavoff SA Curr Protoc Chem Biol; 2019 Dec; 11(4):e77. PubMed ID: 31750990 [TBL] [Abstract][Full Text] [Related]
25. Small Open Reading Frame-Encoded Micro-Peptides: An Emerging Protein World. Dong X; Zhang K; Xun C; Chu T; Liang S; Zeng Y; Liu Z Int J Mol Sci; 2023 Jun; 24(13):. PubMed ID: 37445739 [TBL] [Abstract][Full Text] [Related]
26. Chemoproteomic discovery of cysteine-containing human short open reading frames. Schwaid AG; Shannon DA; Ma J; Slavoff SA; Levin JZ; Weerapana E; Saghatelian A J Am Chem Soc; 2013 Nov; 135(45):16750-3. PubMed ID: 24152191 [TBL] [Abstract][Full Text] [Related]
27. Peptidomic discovery of short open reading frame-encoded peptides in human cells. Slavoff SA; Mitchell AJ; Schwaid AG; Cabili MN; Ma J; Levin JZ; Karger AD; Budnik BA; Rinn JL; Saghatelian A Nat Chem Biol; 2013 Jan; 9(1):59-64. PubMed ID: 23160002 [TBL] [Abstract][Full Text] [Related]
28. Quantitative Top-Down Proteomics by Isobaric Labeling with Thiol-Directed Tandem Mass Tags. Winkels K; Koudelka T; Tholey A J Proteome Res; 2021 Sep; 20(9):4495-4506. PubMed ID: 34338531 [TBL] [Abstract][Full Text] [Related]
29. A Top-Down Proteomics Platform Coupling Serial Size Exclusion Chromatography and Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Tucholski T; Knott SJ; Chen B; Pistono P; Lin Z; Ge Y Anal Chem; 2019 Mar; 91(6):3835-3844. PubMed ID: 30758949 [TBL] [Abstract][Full Text] [Related]
30. RPLC-RPLC-MS/MS for Proteoform Identification. Cupp-Sutton KA; Wang Z; Yu D; Wu S Methods Mol Biol; 2022; 2500():31-42. PubMed ID: 35657585 [TBL] [Abstract][Full Text] [Related]
31. Identification of phosphorylated small ORF-encoded peptides in Hep3B cells by LC/MS/MS. Peng M; Zhou Y; Wan C J Proteomics; 2024 Jul; 303():105214. PubMed ID: 38823442 [TBL] [Abstract][Full Text] [Related]
32. Spatially Resolved Top-Down Proteomics of Tissue Sections Based on a Microfluidic Nanodroplet Sample Preparation Platform. Liao YC; Fulcher JM; Degnan DJ; Williams SM; Bramer LM; Veličković D; Zemaitis KJ; Veličković M; Sontag RL; Moore RJ; Paša-Tolić L; Zhu Y; Zhou M Mol Cell Proteomics; 2023 Feb; 22(2):100491. PubMed ID: 36603806 [TBL] [Abstract][Full Text] [Related]
33. Middle-down approach: a choice to sequence and characterize proteins/proteomes by mass spectrometry. Pandeswari PB; Sabareesh V RSC Adv; 2018 Dec; 9(1):313-344. PubMed ID: 35521579 [TBL] [Abstract][Full Text] [Related]
34. Extended bottom-up proteomics with secreted aspartic protease Sap9. Laskay ÜA; Srzentić K; Monod M; Tsybin YO J Proteomics; 2014 Oct; 110():20-31. PubMed ID: 25123351 [TBL] [Abstract][Full Text] [Related]
35. A simple organic solvent precipitation method to improve detection of low molecular weight proteins. Periasamy P; Rajandran S; Ziegman R; Casey M; Nakamura K; Kore H; Datta K; Gowda H Proteomics; 2021 Oct; 21(19):e2100152. PubMed ID: 34390184 [TBL] [Abstract][Full Text] [Related]
36. Chromatographic separation of peptides and proteins for characterization of proteomes. Liang Y; Zhang L; Zhang Y Chem Commun (Camb); 2023 Jan; 59(3):270-281. PubMed ID: 36504223 [TBL] [Abstract][Full Text] [Related]
37. The hunt for sORFs: A multidisciplinary strategy. Peeters MKR; Menschaert G Exp Cell Res; 2020 Jun; 391(1):111923. PubMed ID: 32135166 [TBL] [Abstract][Full Text] [Related]
38. The Value of Activated Ion Electron Transfer Dissociation for High-Throughput Top-Down Characterization of Intact Proteins. Riley NM; Sikora JW; Seckler HS; Greer JB; Fellers RT; LeDuc RD; Westphall MS; Thomas PM; Kelleher NL; Coon JJ Anal Chem; 2018 Jul; 90(14):8553-8560. PubMed ID: 29924586 [TBL] [Abstract][Full Text] [Related]
39. Pressurized pepsin digestion in proteomics: an automatable alternative to trypsin for integrated top-down bottom-up proteomics. López-Ferrer D; Petritis K; Robinson EW; Hixson KK; Tian Z; Lee JH; Lee SW; Tolić N; Weitz KK; Belov ME; Smith RD; Pasa-Tolić L Mol Cell Proteomics; 2011 Feb; 10(2):M110.001479. PubMed ID: 20627868 [TBL] [Abstract][Full Text] [Related]
40. A perspective view of top-down proteomics in snake venom research. Ghezellou P; Garikapati V; Kazemi SM; Strupat K; Ghassempour A; Spengler B Rapid Commun Mass Spectrom; 2019 May; 33 Suppl 1():20-27. PubMed ID: 30076652 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]