BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 32949960)

  • 1. Structure based pharmacophore modelling approach for the design of azaindole derivatives as DprE1 inhibitors for tuberculosis.
    Kb S; Kumari A; Shetty D; Fernandes E; Dv C; Jays J; Murahari M
    J Mol Graph Model; 2020 Dec; 101():107718. PubMed ID: 32949960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of DprE1 inhibitors for tuberculosis through integrated in-silico approaches.
    Dash S; Rathi E; Kumar A; Chawla K; Kini SG
    Sci Rep; 2024 May; 14(1):11315. PubMed ID: 38760437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Virtual screening and free energy estimation for identifying Mycobacterium tuberculosis flavoenzyme DprE1 inhibitors.
    Niranjan Kumar ; Srivastava R; Prakash A; Lynn AM
    J Mol Graph Model; 2021 Jan; 102():107770. PubMed ID: 33065513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure, dynamics, and interaction of Mycobacterium tuberculosis (Mtb) DprE1 and DprE2 examined by molecular modeling, simulation, and electrostatic studies.
    Bhutani I; Loharch S; Gupta P; Madathil R; Parkesh R
    PLoS One; 2015; 10(3):e0119771. PubMed ID: 25789990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Virtual Screening of Small Molecular Inhibitors against DprE1.
    Zhang G; Guo S; Cui H; Qi J
    Molecules; 2018 Feb; 23(3):. PubMed ID: 29495447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer-assisted discovery of safe and effective DprE1/ aaRSs Inhibitors against TB utilizing Drug Repurposing approach.
    Imran M; Abida ; Alotaibi NM; Thabet HK; Alruwaili JA; Asdaq SMB; Eltaib L; Kamal M; Alshammari ABH; Alshammari AMA; Alshehri A
    J Infect Public Health; 2023 Apr; 16(4):554-572. PubMed ID: 36812878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design, synthesis, and computational studies of benzimidazole derivatives as new antitubercular agents.
    Yalcin-Ozkat G; Ersan RH; Ulger M; Ulger ST; Burmaoglu S; Yildiz I; Algul O
    J Biomol Struct Dyn; 2023 Apr; 41(7):2667-2686. PubMed ID: 35132948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational design of MmpL3 inhibitors for tuberculosis therapy.
    Chaitra R; Gandhi R; Jayanna N; Satyanath S; Pavadai P; Murahari M
    Mol Divers; 2023 Feb; 27(1):357-369. PubMed ID: 35477825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic molecules as DprE1 inhibitors: A patent review.
    Imran M; A S A; Thabet HK; Abida ; Afroz Bakht M
    Expert Opin Ther Pat; 2021 Aug; 31(8):759-772. PubMed ID: 33709862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of DprE1-Mediated Benzothiazinone Resistance in Mycobacterium tuberculosis.
    Foo CS; Lechartier B; Kolly GS; Boy-Röttger S; Neres J; Rybniker J; Lupien A; Sala C; Piton J; Cole ST
    Antimicrob Agents Chemother; 2016 Nov; 60(11):6451-6459. PubMed ID: 27527085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into development of Decaprenyl-phosphoryl-β-D-ribose 2'-epimerase (DprE1) inhibitors as antitubercular agents: A state of the art review.
    Bonde C; Gawad J; Bonde S
    Indian J Tuberc; 2022 Oct; 69(4):404-420. PubMed ID: 36460369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overview of the Development of DprE1 Inhibitors for Combating the Menace of Tuberculosis.
    Chikhale RV; Barmade MA; Murumkar PR; Yadav MR
    J Med Chem; 2018 Oct; 61(19):8563-8593. PubMed ID: 29851474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of selective DprE1 inhibitors: Design, synthesis, crystal structure and antitubercular activity of benzothiazolylpyrimidine-5-carboxamides.
    Chikhale R; Menghani S; Babu R; Bansode R; Bhargavi G; Karodia N; Rajasekharan MV; Paradkar A; Khedekar P
    Eur J Med Chem; 2015; 96():30-46. PubMed ID: 25874329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery of novel DprE1 inhibitors via computational bioactivity fingerprints and structure-based virtual screening.
    Hu XP; Yang L; Chai X; Lei YX; Alam MS; Liu L; Shen C; Jiang DJ; Wang Z; Liu ZY; Xu L; Wan KL; Zhang TY; Yin YL; Li D; Cao DS; Hou TJ
    Acta Pharmacol Sin; 2022 Jun; 43(6):1605-1615. PubMed ID: 34667293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-activity relationship mediated molecular insights of DprE1 inhibitors: A Comprehensive Review.
    Dash S; Rathi E; Kumar A; Chawla K; Joseph A; Kini SG
    J Biomol Struct Dyn; 2024 Aug; 42(12):6472-6522. PubMed ID: 37395797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a Chemical Inhibitor with a Novel Scaffold Targeting Decaprenylphosphoryl-β-D-Ribose Oxidase (DprE1).
    Matsunaga T; Monobe K; Aoki S
    Infect Disord Drug Targets; 2023; 23(5):e090323214508. PubMed ID: 36892121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico guided design of non-covalent inhibitors of DprE1: synthesis and biological evaluation.
    Verma H; Choudhary S; Kumar M; Silakari O
    SAR QSAR Environ Res; 2021 Apr; 32(4):333-352. PubMed ID: 33784906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in the development of DprE1 inhibitors using AI/CADD approaches.
    Chen K; Xu R; Hu X; Li D; Hou T; Kang Y
    Drug Discov Today; 2024 Jun; 29(6):103987. PubMed ID: 38670256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Editorial: Current status and perspective on drug targets in tubercle bacilli and drug design of antituberculous agents based on structure-activity relationship.
    Tomioka H
    Curr Pharm Des; 2014; 20(27):4305-6. PubMed ID: 24245755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of hydantoin based Decaprenylphosphoryl-β-D-Ribose Oxidase (DprE1) inhibitors as antimycobacterial agents using computational tools.
    Mali SN; Pandey A; Bhandare RR; Shaik AB
    Sci Rep; 2022 Sep; 12(1):16368. PubMed ID: 36180452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.