BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

505 related articles for article (PubMed ID: 32950598)

  • 21. 5-Aza-2'-deoxycytidine (decitabine) can relieve p21WAF1 repression in human acute myeloid leukemia by a mechanism involving release of histone deacetylase 1 (HDAC1) without requiring p21WAF1 promoter demethylation.
    Scott SA; Dong WF; Ichinohasama R; Hirsch C; Sheridan D; Sanche SE; Geyer CR; Decoteau JF
    Leuk Res; 2006 Jan; 30(1):69-76. PubMed ID: 16043219
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Therapeutic Potentials of Inhibition of Jumonji C Domain-containing Demethylases in Acute Myeloid Leukemia.
    Koca D; Hastar N; Engür S; Kiraz Y; Ulu GT; Çekdemir D; Baran Y
    Turk J Haematol; 2020 Feb; 37(1):5-12. PubMed ID: 31833715
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Histone methylation can either promote or reduce cellular radiosensitivity by regulating DNA repair pathways.
    Zhou Y; Shao C
    Mutat Res Rev Mutat Res; 2021; 787():108362. PubMed ID: 34083050
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DNA methylation as a pathogenic event and as a therapeutic target in AML.
    Schoofs T; Müller-Tidow C
    Cancer Treat Rev; 2011; 37 Suppl 1():S13-8. PubMed ID: 21612874
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent Clinical Update of Acute Myeloid Leukemia: Focus on Epigenetic Therapies.
    Lee E; Koh Y; Hong J; Eom HS; Yoon SS
    J Korean Med Sci; 2021 Apr; 36(13):e85. PubMed ID: 33821592
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of epigenetic in leukemia: From mechanism to therapy.
    Liu XL; Liu HQ; Li J; Mao CY; He JT; Zhao X
    Chem Biol Interact; 2020 Feb; 317():108963. PubMed ID: 31978391
    [TBL] [Abstract][Full Text] [Related]  

  • 27. KDM6 demethylases integrate DNA repair gene regulation and loss of KDM6A sensitizes human acute myeloid leukemia to PARP and BCL2 inhibition.
    Boila LD; Ghosh S; Bandyopadhyay SK; Jin L; Murison A; Zeng AGX; Shaikh W; Bhowmik S; Muddineni SSNA; Biswas M; Sinha S; Chatterjee SS; Mbong N; Gan OI; Bose A; Chakraborty S; Arruda A; Kennedy JA; Mitchell A; Lechman ER; Banerjee D; Milyavsky M; Minden MD; Dick JE; Sengupta A
    Leukemia; 2023 Apr; 37(4):751-764. PubMed ID: 36720973
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cancer-specific changes in DNA methylation reveal aberrant silencing and activation of enhancers in leukemia.
    Qu Y; Siggens L; Cordeddu L; Gaidzik VI; Karlsson K; Bullinger L; Döhner K; Ekwall K; Lehmann S; Lennartsson A
    Blood; 2017 Feb; 129(7):e13-e25. PubMed ID: 28003272
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Epigenetic Targets and their Inhibitors in Cancer Therapy.
    Zhao L; Duan YT; Lu P; Zhang ZJ; Zheng XK; Wang JL; Feng WS
    Curr Top Med Chem; 2018; 18(28):2395-2419. PubMed ID: 30582481
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Epigenetic mechanisms in AML - a target for therapy.
    Oki Y; Issa JP
    Cancer Treat Res; 2010; 145():19-40. PubMed ID: 20306243
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aberrant DNA Methylation in Acute Myeloid Leukemia and Its Clinical Implications.
    Yang X; Wong MPM; Ng RK
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31527484
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Origins of aberrant DNA methylation in acute myeloid leukemia.
    Schoofs T; Berdel WE; Müller-Tidow C
    Leukemia; 2014 Jan; 28(1):1-14. PubMed ID: 23958917
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Targeting histone lysine methylation in cancer.
    McGrath J; Trojer P
    Pharmacol Ther; 2015 Jun; 150():1-22. PubMed ID: 25578037
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cell-based assays to support the profiling of small molecules with histone methyltransferase and demethylase modulatory activity.
    Martinez NJ; Simeonov A
    Drug Discov Today Technol; 2015 Nov; 18():9-17. PubMed ID: 26723887
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Digging deep into "dirty" drugs - modulation of the methylation machinery.
    Pleyer L; Greil R
    Drug Metab Rev; 2015 May; 47(2):252-79. PubMed ID: 25566693
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of histone demethylases and histone methyltransferases in triple-negative breast cancer: Epigenetic mnemonics.
    Mandumpala JJ; Baby S; Tom AA; Godugu C; Shankaraiah N
    Life Sci; 2022 Mar; 292():120321. PubMed ID: 35031259
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Epigenetic cancer therapy: Proof of concept and remaining challenges.
    Mund C; Lyko F
    Bioessays; 2010 Nov; 32(11):949-57. PubMed ID: 21154865
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Aberrant DNA methylation and its targeted therapy in acute myeloid leukemia].
    Li X; Zhu L; Ye X
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2016 May; 45(4):387-394. PubMed ID: 27868412
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Targeting the scaffolding role of LSD1 (KDM1A) poises acute myeloid leukemia cells for retinoic acid-induced differentiation.
    Ravasio R; Ceccacci E; Nicosia L; Hosseini A; Rossi PL; Barozzi I; Fornasari L; Zuffo RD; Valente S; Fioravanti R; Mercurio C; Varasi M; Mattevi A; Mai A; Pavesi G; Bonaldi T; Minucci S
    Sci Adv; 2020 Apr; 6(15):eaax2746. PubMed ID: 32284990
    [TBL] [Abstract][Full Text] [Related]  

  • 40. What potential is there for LSD1 inhibitors to reach approval for AML?
    Pandey MR; Wang ES
    Expert Opin Emerg Drugs; 2019 Dec; 24(4):205-212. PubMed ID: 31914875
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.