BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

506 related articles for article (PubMed ID: 32950598)

  • 41. Cancer-testis antigen expression and its epigenetic modulation in acute myeloid leukemia.
    Atanackovic D; Luetkens T; Kloth B; Fuchs G; Cao Y; Hildebrandt Y; Meyer S; Bartels K; Reinhard H; Lajmi N; Hegewisch-Becker S; Schilling G; Platzbecker U; Kobbe G; Schroeder T; Bokemeyer C; Kröger N
    Am J Hematol; 2011 Nov; 86(11):918-22. PubMed ID: 21898529
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Preclinical evaluation of antineoplastic activity of inhibitors of DNA methylation (5-aza-2'-deoxycytidine) and histone deacetylation (trichostatin A, depsipeptide) in combination against myeloid leukemic cells.
    Shaker S; Bernstein M; Momparler LF; Momparler RL
    Leuk Res; 2003 May; 27(5):437-44. PubMed ID: 12620295
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Butyrates and decitabine cooperate to induce histone acetylation and granulocytic maturation of t(8;21) acute myeloid leukemia blasts.
    Gozzini A; Santini V
    Ann Hematol; 2005 Dec; 84 Suppl 1():54-60. PubMed ID: 16228241
    [TBL] [Abstract][Full Text] [Related]  

  • 44. HSC commitment-associated epigenetic signature is prognostic in acute myeloid leukemia.
    Bartholdy B; Christopeit M; Will B; Mo Y; Barreyro L; Yu Y; Bhagat TD; Okoye-Okafor UC; Todorova TI; Greally JM; Levine RL; Melnick A; Verma A; Steidl U
    J Clin Invest; 2014 Mar; 124(3):1158-67. PubMed ID: 24487588
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Conventional chemotherapy or hypomethylating agents for older patients with acute myeloid leukaemia?
    Ferrara F
    Hematol Oncol; 2014 Mar; 32(1):1-9. PubMed ID: 23512815
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Histone modification therapy of cancer.
    Biancotto C; Frigè G; Minucci S
    Adv Genet; 2010; 70():341-86. PubMed ID: 20920755
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Epigenetic Regulators in the Development, Maintenance, and Therapeutic Targeting of Acute Myeloid Leukemia.
    Sun Y; Chen BR; Deshpande A
    Front Oncol; 2018; 8():41. PubMed ID: 29527516
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Small molecule epigenetic inhibitors targeted to histone lysine methyltransferases and demethylases.
    Wang Z; Patel DJ
    Q Rev Biophys; 2013 Nov; 46(4):349-73. PubMed ID: 23991894
    [TBL] [Abstract][Full Text] [Related]  

  • 49. LSD1: biologic roles and therapeutic targeting.
    Maiques-Diaz A; Somervaille TC
    Epigenomics; 2016 Aug; 8(8):1103-16. PubMed ID: 27479862
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Epigenetic therapy combinations in acute myeloid leukemia: what are the options?
    Bewersdorf JP; Shallis R; Stahl M; Zeidan AM
    Ther Adv Hematol; 2019; 10():2040620718816698. PubMed ID: 30719265
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Epigenetics and approaches to targeted epigenetic therapy in acute myeloid leukemia.
    Wouters BJ; Delwel R
    Blood; 2016 Jan; 127(1):42-52. PubMed ID: 26660432
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Are DNA damage response kinases a target for the differentiation treatment of acute myeloid leukemia?
    Pennisi R; Albanesi J; Ascenzi P; Nervi C; di Masi A
    IUBMB Life; 2018 Nov; 70(11):1057-1066. PubMed ID: 30296357
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Human AML-iPSCs Reacquire Leukemic Properties after Differentiation and Model Clonal Variation of Disease.
    Chao MP; Gentles AJ; Chatterjee S; Lan F; Reinisch A; Corces MR; Xavy S; Shen J; Haag D; Chanda S; Sinha R; Morganti RM; Nishimura T; Ameen M; Wu H; Wernig M; Wu JC; Majeti R
    Cell Stem Cell; 2017 Mar; 20(3):329-344.e7. PubMed ID: 28089908
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Epigenetic deregulation in myeloid malignancies.
    Meldi KM; Figueroa ME
    Transl Res; 2015 Jan; 165(1):102-14. PubMed ID: 24813528
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Harnessing the potential of epigenetic therapies for childhood acute myeloid leukemia.
    Newcombe AA; Gibson BES; Keeshan K
    Exp Hematol; 2018 Jul; 63():1-11. PubMed ID: 29608923
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Epigenetic therapies in acute myeloid leukemia: the role of hypomethylating agents, histone deacetylase inhibitors and the combination of hypomethylating agents with histone deacetylase inhibitors.
    Xu QY; Yu L
    Chin Med J (Engl); 2020 Mar; 133(6):699-715. PubMed ID: 32044818
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Targeting Histone Methylation in Cancer.
    McCabe MT; Mohammad HP; Barbash O; Kruger RG
    Cancer J; 2017; 23(5):292-301. PubMed ID: 28926430
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Butyrates, as a single drug, induce histone acetylation and granulocytic maturation: possible selectivity on core binding factor-acute myeloid leukemia blasts.
    Gozzini A; Rovida E; Dello Sbarba P; Galimberti S; Santini V
    Cancer Res; 2003 Dec; 63(24):8955-61. PubMed ID: 14695213
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Controllers of histone methylation-modifying enzymes in gastrointestinal cancers.
    Li L; Song Q; Zhou J; Ji Q
    Biomed Pharmacother; 2024 May; 174():116488. PubMed ID: 38520871
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy.
    Morera L; Lübbert M; Jung M
    Clin Epigenetics; 2016; 8():57. PubMed ID: 27222667
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.