BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32950757)

  • 1. A fast full-wave solver for calculating ultrasound propagation in the body.
    Haqshenas SR; Gélat P; van 't Wout E; Betcke T; Saffari N
    Ultrasonics; 2021 Feb; 110():106240. PubMed ID: 32950757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved intercostal HIFU ablation using a phased array transducer based on Fermat's spiral and Voronoi tessellation: A numerical evaluation.
    Ramaekers P; Ries M; Moonen CT; de Greef M
    Med Phys; 2017 Mar; 44(3):1071-1088. PubMed ID: 28058731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of non-linear acoustic field and thermal pattern of phased-array high-intensity focused ultrasound (HIFU).
    Wang M; Zhou Y
    Int J Hyperthermia; 2016 Aug; 32(5):569-82. PubMed ID: 27145871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intercostal high intensity focused ultrasound for liver ablation: The influence of beam shaping on sonication efficacy and near-field risks.
    de Greef M; Schubert G; Wijlemans JW; Koskela J; Bartels LW; Moonen CT; Ries M
    Med Phys; 2015 Aug; 42(8):4685-97. PubMed ID: 26233196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical evaluation of the effect of electronically steering a phased array transducer: axially post-focal shifting.
    Wang M; Zhou Y
    Int J Hyperthermia; 2017 Nov; 33(7):758-769. PubMed ID: 28540816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fast boundary element method for the scattering analysis of high-intensity focused ultrasound.
    van 't Wout E; Gélat P; Betcke T; Arridge S
    J Acoust Soc Am; 2015 Nov; 138(5):2726-37. PubMed ID: 26627749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The optimization of acoustic fields for ablative therapies of tumours in the upper abdomen.
    Gélat P; Ter Haar G; Saffari N
    Phys Med Biol; 2012 Dec; 57(24):8471-97. PubMed ID: 23207408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of acoustic nonlinearity in tissue heating behind a rib cage using a high-intensity focused ultrasound phased array.
    Yuldashev PV; Shmeleva SM; Ilyin SA; Sapozhnikov OA; Gavrilov LR; Khokhlova VA
    Phys Med Biol; 2013 Apr; 58(8):2537-59. PubMed ID: 23528338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of Microbubble-Enhanced High-Intensity Focused Ultrasound.
    Gnanaskandan A; Hsiao CT; Chahine G
    Ultrasound Med Biol; 2019 Jul; 45(7):1743-1761. PubMed ID: 30982546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deployable tessellated transducer array for ultrasound focusing and bio-heat generation in a multilayer environment.
    Zou C; Harne RL
    Ultrasonics; 2020 May; 104():106108. PubMed ID: 32145443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical analysis of thermal response of tissues subjected to high intensity focused ultrasound.
    Gupta P; Srivastava A
    Int J Hyperthermia; 2018; 35(1):419-434. PubMed ID: 30307345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calculating the Effect of Ribs on the Focus Quality of a Therapeutic Spherical Random Phased Array.
    Zubair M; Dickinson R
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33572208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling of the acoustic field of a multi-element HIFU array scattered by human ribs.
    Gélat P; Ter Haar G; Saffari N
    Phys Med Biol; 2011 Sep; 56(17):5553-81. PubMed ID: 21828903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational study on the propagation of strongly focused nonlinear ultrasound in tissue with rib-like structures.
    Lin J; Liu X; Gong X; Ping Z; Wu J
    J Acoust Soc Am; 2013 Aug; 134(2):1702-14. PubMed ID: 23927211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a multi-element clinical HIFU system using acoustic holography and nonlinear modeling.
    Kreider W; Yuldashev PV; Sapozhnikov OA; Farr N; Partanen A; Bailey MR; Khokhlova VA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Aug; 60(8):1683-98. PubMed ID: 25004539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic resonance-guided shielding of prefocal acoustic obstacles in focused ultrasound therapy: application to intercostal ablation in liver.
    Salomir R; Petrusca L; Auboiroux V; Muller A; Vargas MI; Morel DR; Goget T; Breguet R; Terraz S; Hopple J; Montet X; Becker CD; Viallon M
    Invest Radiol; 2013 Jun; 48(6):366-80. PubMed ID: 23344514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time Monitoring of High Intensity Focused Ultrasound (HIFU) Ablation of In Vitro Canine Livers Using Harmonic Motion Imaging for Focused Ultrasound (HMIFU).
    Grondin J; Payen T; Wang S; Konofagou EE
    J Vis Exp; 2015 Nov; (105):e53050. PubMed ID: 26556647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-frequency (20-MHz) high-intensity focused ultrasound (HIFU) system for dermal intervention: Preclinical evaluation in skin equivalents.
    Bove T; Zawada T; Serup J; Jessen A; Poli M
    Skin Res Technol; 2019 Mar; 25(2):217-228. PubMed ID: 30620418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphometric analysis of high-intensity focused ultrasound-induced lipolysis on cadaveric abdominal and thigh skin.
    Lee S; Kim HJ; Park HJ; Kim HM; Lee SH; Cho SB
    Lasers Med Sci; 2017 Jul; 32(5):1143-1151. PubMed ID: 28451817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A full-wave phase aberration correction method for transcranial high-intensity focused ultrasound brain therapies.
    Almquist S; de Bever J; Merrill R; Parker D; Christensen D
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():310-3. PubMed ID: 25569959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.