These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 32951265)

  • 1. A dual role for Tbx1 in cardiac lymphangiogenesis through genetic interaction with Vegfr3.
    Martucciello S; Turturo MG; Bilio M; Cioffi S; Chen L; Baldini A; Illingworth E
    FASEB J; 2020 Nov; 34(11):15062-15079. PubMed ID: 32951265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tbx1 regulates Vegfr3 and is required for lymphatic vessel development.
    Chen L; Mupo A; Huynh T; Cioffi S; Woods M; Jin C; McKeehan W; Thompson-Snipes L; Baldini A; Illingworth E
    J Cell Biol; 2010 May; 189(3):417-24. PubMed ID: 20439995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tbx1 regulates brain vascularization.
    Cioffi S; Martucciello S; Fulcoli FG; Bilio M; Ferrentino R; Nusco E; Illingworth E
    Hum Mol Genet; 2014 Jan; 23(1):78-89. PubMed ID: 23945394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tumour necrosis factor superfamily member 15 (Tnfsf15) facilitates lymphangiogenesis via up-regulation of Vegfr3 gene expression in lymphatic endothelial cells.
    Qin TT; Xu GC; Qi JW; Yang GL; Zhang K; Liu HL; Xu LX; Xiang R; Xiao G; Cao H; Wei Y; Zhang QZ; Li LY
    J Pathol; 2015 Nov; 237(3):307-18. PubMed ID: 26096340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of ILK as a critical regulator of VEGFR3 signalling and lymphatic vascular growth.
    Urner S; Planas-Paz L; Hilger LS; Henning C; Branopolski A; Kelly-Goss M; Stanczuk L; Pitter B; Montanez E; Peirce SM; Mäkinen T; Lammert E
    EMBO J; 2019 Jan; 38(2):. PubMed ID: 30518533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Docetaxel facilitates lymphatic-tumor crosstalk to promote lymphangiogenesis and cancer progression.
    Harris AR; Perez MJ; Munson JM
    BMC Cancer; 2018 Jul; 18(1):718. PubMed ID: 29976154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. H-, N- and Kras cooperatively regulate lymphatic vessel growth by modulating VEGFR3 expression in lymphatic endothelial cells in mice.
    Ichise T; Yoshida N; Ichise H
    Development; 2010 Mar; 137(6):1003-13. PubMed ID: 20179099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ETS transcription factor Etsrp / Etv2 is required for lymphangiogenesis and directly regulates vegfr3 / flt4 expression.
    Davis JA; Koenig AL; Lubert A; Chestnut B; Liu F; Palencia Desai S; Winkler T; Pociute K; Choi K; Sumanas S
    Dev Biol; 2018 Aug; 440(1):40-52. PubMed ID: 29753018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ischemia-Reperfusion Injury Enhances Lymphatic Endothelial VEGFR3 and Rejection in Cardiac Allografts.
    Dashkevich A; Raissadati A; Syrjälä SO; Zarkada G; Keränen MA; Tuuminen R; Krebs R; Anisimov A; Jeltsch M; Leppänen VM; Alitalo K; Nykänen AI; Lemström KB
    Am J Transplant; 2016 Apr; 16(4):1160-72. PubMed ID: 26689983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a Tbx1/Tbx2/Tbx3 genetic pathway governing pharyngeal and arterial pole morphogenesis.
    Mesbah K; Rana MS; Francou A; van Duijvenboden K; Papaioannou VE; Moorman AF; Kelly RG; Christoffels VM
    Hum Mol Genet; 2012 Mar; 21(6):1217-29. PubMed ID: 22116936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lymphangiogenesis contributes to exercise-induced physiological cardiac growth.
    Bei Y; Huang Z; Feng X; Li L; Wei M; Zhu Y; Liu S; Chen C; Yin M; Jiang H; Xiao J
    J Sport Health Sci; 2022 Jul; 11(4):466-478. PubMed ID: 35218948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lymphatic and Immune Cell Cross-Talk Regulates Cardiac Recovery After Experimental Myocardial Infarction.
    Houssari M; Dumesnil A; Tardif V; Kivelä R; Pizzinat N; Boukhalfa I; Godefroy D; Schapman D; Hemanthakumar KA; Bizou M; Henry JP; Renet S; Riou G; Rondeaux J; Anouar Y; Adriouch S; Fraineau S; Alitalo K; Richard V; Mulder P; Brakenhielm E
    Arterioscler Thromb Vasc Biol; 2020 Jul; 40(7):1722-1737. PubMed ID: 32404007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduced dosage of β-catenin provides significant rescue of cardiac outflow tract anomalies in a Tbx1 conditional null mouse model of 22q11.2 deletion syndrome.
    Racedo SE; Hasten E; Lin M; Devakanmalai GS; Guo T; Ozbudak EM; Cai CL; Zheng D; Morrow BE
    PLoS Genet; 2017 Mar; 13(3):e1006687. PubMed ID: 28346476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dysregulation of TBX1 dosage in the anterior heart field results in congenital heart disease resembling the 22q11.2 duplication syndrome.
    Hasten E; McDonald-McGinn DM; Crowley TB; Zackai E; Emanuel BS; Morrow BE; Racedo SE
    Hum Mol Genet; 2018 Jun; 27(11):1847-1857. PubMed ID: 29509905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. VEGFR3 modulates brain microvessel branching in a mouse model of 22q11.2 deletion syndrome.
    Cioffi S; Flore G; Martucciello S; Bilio M; Turturo MG; Illingworth E
    Life Sci Alliance; 2022 Oct; 5(12):. PubMed ID: 36216515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deletion of vascular endothelial growth factor C (VEGF-C) and VEGF-D is not equivalent to VEGF receptor 3 deletion in mouse embryos.
    Haiko P; Makinen T; Keskitalo S; Taipale J; Karkkainen MJ; Baldwin ME; Stacker SA; Achen MG; Alitalo K
    Mol Cell Biol; 2008 Aug; 28(15):4843-50. PubMed ID: 18519586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterogeneity in VEGFR3 levels drives lymphatic vessel hyperplasia through cell-autonomous and non-cell-autonomous mechanisms.
    Zhang Y; Ulvmar MH; Stanczuk L; Martinez-Corral I; Frye M; Alitalo K; Mäkinen T
    Nat Commun; 2018 Apr; 9(1):1296. PubMed ID: 29615616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Left pulmonary artery in 22q11.2 deletion syndrome. Echocardiographic evaluation in patients without cardiac defects and role of Tbx1 in mice.
    Mastromoro G; Calcagni G; Versacci P; Putotto C; Chinali M; Lambiase C; Unolt M; Pelliccione E; Anaclerio S; Caprio C; Cioffi S; Bilio M; Baban A; Drago F; Digilio MC; Marino B; Baldini A
    PLoS One; 2019; 14(4):e0211170. PubMed ID: 30933971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. VE-Cadherin Is Required for Cardiac Lymphatic Maintenance and Signaling.
    Harris NR; Nielsen NR; Pawlak JB; Aghajanian A; Rangarajan K; Serafin DS; Farber G; Dy DM; Nelson-Maney NP; Xu W; Ratra D; Hurr SH; Qian L; Scallan JP; Caron KM
    Circ Res; 2022 Jan; 130(1):5-23. PubMed ID: 34789016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss of CXCL12/CXCR4 signalling impacts several aspects of cardiovascular development but does not exacerbate Tbx1 haploinsufficiency.
    Page M; Ridge L; Gold Diaz D; Tsogbayar T; Scambler PJ; Ivins S
    PLoS One; 2018; 13(11):e0207251. PubMed ID: 30408103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.