BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 32951361)

  • 1. Simulations of Glomerular Shear and Hoop Stresses in Diabetes, Hypertension, and Reduced Renal Mass using a Network Model of a Rat Glomerulus.
    Richfield O; Cortez R; Navar LG
    Physiol Rep; 2020 Sep; 8(18):e14577. PubMed ID: 32951361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulations of increased glomerular capillary wall strain in the 5/6-nephrectomized rat.
    Richfield O; Cortez R; Navar LG
    Microcirculation; 2021 Oct; 28(7):e12721. PubMed ID: 34192389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current concepts of renal hemodynamics in diabetes.
    Anderson S; Vora JP
    J Diabetes Complications; 1995; 9(4):304-7. PubMed ID: 8573753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of nephron loss on glomerular hemodynamics and morphology in diabetic rats.
    O'Donnell MP; Kasiske BL; Daniels FX; Keane WF
    Diabetes; 1986 Sep; 35(9):1011-5. PubMed ID: 3743905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pathogenesis of diabetic glomerulopathy: hemodynamic considerations.
    Hostetter TH
    Semin Nephrol; 1990 May; 10(3):219-27. PubMed ID: 2190279
    [No Abstract]   [Full Text] [Related]  

  • 6. Effect of unilateral nephrectomy on renal function of diabetic rats.
    Lopes GS; Lemos CC; Mandarim-De-Lacerda CA; Bregman R
    Histol Histopathol; 2004 Oct; 19(4):1085-8. PubMed ID: 15375750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glomerular hemodynamics in moderate Goldblatt hypertension in the rat.
    Steiner RW; Tucker BJ; Gushwa LC; Gifford J; Wilson CB; Blantz RC
    Hypertension; 1982; 4(1):51-7. PubMed ID: 7061129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension.
    Zatz R; Dunn BR; Meyer TW; Anderson S; Rennke HG; Brenner BM
    J Clin Invest; 1986 Jun; 77(6):1925-30. PubMed ID: 3011862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the interaction between tubuloglomerular feedback and myogenic mechanisms in the control of glomerular mechanics.
    Richfield O; Cortez R; Navar LG
    Front Physiol; 2024; 15():1410764. PubMed ID: 38966231
    [No Abstract]   [Full Text] [Related]  

  • 10. Shear stress is normalized in glomerular capillaries following ⅚ nephrectomy.
    Ferrell N; Sandoval RM; Bian A; Campos-Bilderback SB; Molitoris BA; Fissell WH
    Am J Physiol Renal Physiol; 2015 Mar; 308(6):F588-93. PubMed ID: 25587117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glomerular hemodynamic and structural alterations in experimental diabetes mellitus.
    O'Donnell MP; Kasiske BL; Keane WF
    FASEB J; 1988 May; 2(8):2339-47. PubMed ID: 3282959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time observation of glomerular hemodynamic changes in diabetic rats: effects of insulin and ARB.
    Li B; Yao J; Kawamura K; Oyanagi-Tanaka Y; Hoshiyama M; Morioka T; Gejyo F; Uchiyama M; Oite T
    Kidney Int; 2004 Nov; 66(5):1939-48. PubMed ID: 15496165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Consequences of Glomerular Hyperfiltration: The Role of Physical Forces in the Pathogenesis of Chronic Kidney Disease in Diabetes and Obesity.
    Chagnac A; Zingerman B; Rozen-Zvi B; Herman-Edelstein M
    Nephron; 2019; 143(1):38-42. PubMed ID: 30947190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Onset of glomerular hypertension with aging precedes injury in the spontaneously hypertensive rat.
    Tolbert EM; Weisstuch J; Feiner HD; Dworkin LD
    Am J Physiol Renal Physiol; 2000 May; 278(5):F839-46. PubMed ID: 10807597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Primary proximal tubule hyperreabsorption and impaired tubular transport counterregulation determine glomerular hyperfiltration in diabetes: a modeling analysis.
    Hallow KM; Gebremichael Y; Helmlinger G; Vallon V
    Am J Physiol Renal Physiol; 2017 May; 312(5):F819-F835. PubMed ID: 28148531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diabetic nephropathy. A perspective.
    Mauer SM; Steffes MW; Goetz FC; Sutherland DE; Brown DM
    Diabetes; 1983 May; 32 Suppl 2():52-5. PubMed ID: 6400668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A network thermodynamic model of glomerular dynamics: application in the rat.
    Oken DE; Thomas SR; Mikulecky DC
    Kidney Int; 1981 Feb; 19(2):359-73. PubMed ID: 7230620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport of molecules across renal glomerular capillaries.
    Brenner BM; Baylis C; Deen WM
    Physiol Rev; 1976 Jul; 56(3):502-34. PubMed ID: 778868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glomerular hemodynamics and vascular structure in uremia: a network analysis of glomerular path lengths and maximal blood transit times computed for a microvascular model reconstructed from subserial ultrathin sections.
    Shea SM; Raskova J
    Microvasc Res; 1984 Jul; 28(1):37-50. PubMed ID: 6748958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dietary supplementation with L-arginine ameliorates glomerular hypertension in rats with subtotal nephrectomy.
    Katoh T; Takahashi K; Klahr S; Reyes AA; Badr KF
    J Am Soc Nephrol; 1994 Mar; 4(9):1690-4. PubMed ID: 8011979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.