BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32951786)

  • 1. Traction performance across the life of slip-resistant footwear: Preliminary results from a longitudinal study.
    Hemler SL; Pliner EM; Redfern MS; Haight JM; Beschorner KE
    J Safety Res; 2020 Sep; 74():219-225. PubMed ID: 32951786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of natural shoe wear on traction performance: a longitudinal study.
    Hemler SL; Pliner EM; Redfern MS; Haight JM; Beschorner KE
    Footwear Sci; 2022; 14(1):1-12. PubMed ID: 37701063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in under-shoe traction and fluid drainage for progressively worn shoe tread.
    Hemler SL; Charbonneau DN; Iraqi A; Redfern MS; Haight JM; Moyer BE; Beschorner KE
    Appl Ergon; 2019 Oct; 80():35-42. PubMed ID: 31280808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences in Friction Performance between New and Worn Shoes.
    Cook A; Hemler S; Sundaram V; Chanda A; Beschorner K
    IISE Trans Occup Ergon Hum Factors; 2020; 8(4):209-214. PubMed ID: 33955322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Worn region size of shoe outsole impacts human slips: Testing a mechanistic model.
    Sundaram VH; Hemler SL; Chanda A; Haight JM; Redfern MS; Beschorner KE
    J Biomech; 2020 May; 105():109797. PubMed ID: 32423543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An observational ergonomic tool for assessing the worn condition of slip-resistant shoes.
    Beschorner KE; Siegel JL; Hemler SL; Sundaram VH; Chanda A; Iraqi A; Haight JM; Redfern MS
    Appl Ergon; 2020 Oct; 88():103140. PubMed ID: 32678768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating the Influence of Spatiotemporal Gait Characteristics on Shoe Wear Rate.
    Griffin SC; Hemler SL; Beschorner KE
    IISE Trans Occup Ergon Hum Factors; 2022; 10(1):1-6. PubMed ID: 34781847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In contrast to slip-resistant shoes, fluid drainage capacity explains friction performance across shoes that are not slip-resistant.
    Meehan EE; Vidic N; Beschorner KE
    Appl Ergon; 2022 Apr; 100():103663. PubMed ID: 34894586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical modeling of footwear-fluid-floor interaction during slips.
    Gupta S; Chanda A
    J Biomech; 2023 Jul; 156():111690. PubMed ID: 37356270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gait kinetics impact shoe tread wear rate.
    Hemler SL; Sider JR; Redfern MS; Beschorner KE
    Gait Posture; 2021 May; 86():157-161. PubMed ID: 33735824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of a portable shoe tread scanner to predict slip risk.
    Hemler SL; Beschorner KE
    J Safety Res; 2023 Sep; 86():5-11. PubMed ID: 37718069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting slips based on the STM 603 whole-footwear tribometer under different coefficient of friction testing conditions.
    Beschorner KE; Iraqi A; Redfern MS; Cham R; Li Y
    Ergonomics; 2019 May; 62(5):668-681. PubMed ID: 30638144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of coefficient of friction based on footwear outsole features.
    Iraqi A; Vidic NS; Redfern MS; Beschorner KE
    Appl Ergon; 2020 Jan; 82():102963. PubMed ID: 31580996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validating the ability of a portable shoe-floor friction testing device, NextSTEPS, to predict human slips.
    Beschorner KE; Chanda A; Moyer BE; Reasinger A; Griffin SC; Johnston IM
    Appl Ergon; 2023 Jan; 106():103854. PubMed ID: 35973317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluid pressures at the shoe-floor-contaminant interface during slips: effects of tread and implications on slip severity.
    Beschorner KE; Albert DL; Chambers AJ; Redfern MS
    J Biomech; 2014 Jan; 47(2):458-63. PubMed ID: 24267270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coefficient of friction testing parameters influence the prediction of human slips.
    Iraqi A; Cham R; Redfern MS; Beschorner KE
    Appl Ergon; 2018 Jul; 70():118-126. PubMed ID: 29866300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prospective validity assessment of a friction prediction model based on tread outsole features of slip-resistant shoes.
    Beschorner KE; Nasarwanji M; Deschler C; Hemler SL
    Appl Ergon; 2024 Jan; 114():104110. PubMed ID: 37595332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Method for Measuring Fluid Pressures in the Shoe-Floor-Fluid Interface: Application to Shoe Tread Evaluation.
    Singh G; Beschorner KE
    IIE Trans Occup; 2014; 2(2):53-59. PubMed ID: 31106007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of friction and assessment of slip resistance of new and used footwear soles on contaminated floors.
    Grönqvist R
    Ergonomics; 1995 Feb; 38(2):224-241. PubMed ID: 28084937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing footwear for older people at risk of falls.
    Menant JC; Steele JR; Menz HB; Munro BJ; Lord SR
    J Rehabil Res Dev; 2008; 45(8):1167-81. PubMed ID: 19235118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.