These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32951831)

  • 1. Bacterial luciferase: Molecular mechanisms and applications.
    Tinikul R; Chunthaboon P; Phonbuppha J; Paladkong T
    Enzymes; 2020; 47():427-455. PubMed ID: 32951831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protonation status and control mechanism of flavin-oxygen intermediates in the reaction of bacterial luciferase.
    Tinikul R; Lawan N; Akeratchatapan N; Pimviriyakul P; Chinantuya W; Suadee C; Sucharitakul J; Chenprakhon P; Ballou DP; Entsch B; Chaiyen P
    FEBS J; 2021 May; 288(10):3246-3260. PubMed ID: 33289305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure, Mechanism, and Mutation of Bacterial Luciferase.
    Tinikul R; Chaiyen P
    Adv Biochem Eng Biotechnol; 2016; 154():47-74. PubMed ID: 25487767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QM/MM Molecular Modeling Reveals Mechanism Insights into Flavin Peroxide Formation in Bacterial Luciferase.
    Lawan N; Tinikul R; Surawatanawong P; Mulholland AJ; Chaiyen P
    J Chem Inf Model; 2022 Jan; 62(2):399-411. PubMed ID: 34989561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Minimized Chemoenzymatic Cascade for Bacterial Luciferase in Bioreporter Applications.
    Phonbuppha J; Tinikul R; Wongnate T; Intasian P; Hollmann F; Paul CE; Chaiyen P
    Chembiochem; 2020 Jul; 21(14):2073-2079. PubMed ID: 32187433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic destabilization of the hydroperoxy flavin intermediate by site-directed modification of the reactive thiol in bacterial luciferase.
    Abu-Soud HM; Clark AC; Francisco WA; Baldwin TO; Raushel FM
    J Biol Chem; 1993 Apr; 268(11):7699-706. PubMed ID: 8463299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioluminophore and Flavin Mononucleotide Fluorescence Quenching of Bacterial Bioluminescence-A Theoretical Study.
    Luo Y; Liu YJ
    Chemistry; 2016 Nov; 22(45):16243-16249. PubMed ID: 27665749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Mechanisms of Bacterial Bioluminescence.
    Brodl E; Winkler A; Macheroux P
    Comput Struct Biotechnol J; 2018; 16():551-564. PubMed ID: 30546856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unifying and versatile features of flavin-dependent monooxygenases: Diverse catalysis by a common C4a-(hydro)peroxyflavin.
    Phintha A; Chaiyen P
    J Biol Chem; 2023 Dec; 299(12):105413. PubMed ID: 37918809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional implications of the unstructured loop in the (beta/alpha)(8) barrel structure of the bacterial luciferase alpha subunit.
    Sparks JM; Baldwin TO
    Biochemistry; 2001 Dec; 40(50):15436-43. PubMed ID: 11735428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of LuxF on light intensity in bacterial bioluminescence.
    Brodl E; Csamay A; Horn C; Niederhauser J; Weber H; Macheroux P
    J Photochem Photobiol B; 2020 Jun; 207():111881. PubMed ID: 32325406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identity of the emitter in the bacterial luciferase luminescence reaction: binding and fluorescence quantum yield studies of 5-decyl-4a-hydroxy-4a,5-dihydroriboflavin-5'-phosphate as a model.
    Lei B; Ding Q; Tu SC
    Biochemistry; 2004 Dec; 43(50):15975-82. PubMed ID: 15595854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vibrio harveyi flavin reductase--luciferase fusion protein mimics a single-component bifunctional monooxygenase.
    Jawanda N; Ahmed K; Tu SC
    Biochemistry; 2008 Jan; 47(1):368-77. PubMed ID: 18067321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tryptophan 250 on the alpha subunit plays an important role in flavin and aldehyde binding to bacterial luciferase. Effects of W-->Y mutations on catalytic function.
    Li Z; Meighen EA
    Biochemistry; 1995 Nov; 34(46):15084-90. PubMed ID: 7578121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of the monooxygenase component of a two-component flavoprotein monooxygenase.
    Alfieri A; Fersini F; Ruangchan N; Prongjit M; Chaiyen P; Mattevi A
    Proc Natl Acad Sci U S A; 2007 Jan; 104(4):1177-82. PubMed ID: 17227849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational analysis of the oxygen addition at the C4a site of reduced flavin in the bacterial luciferase bioluminescence reaction.
    Wada N; Sugimoto T; Watanabe H; Tu SC
    Photochem Photobiol; 1999 Jul; 70(1):116-22. PubMed ID: 10420850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of bacterial luciferase with 8-substituted flavin mononucleotide derivatives.
    Francisco WA; Abu-Soud HM; Topgi R; Baldwin TO; Raushel FM
    J Biol Chem; 1996 Jan; 271(1):104-10. PubMed ID: 8550543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of the bacterial luciferase/flavin complex provides insight into the function of the beta subunit.
    Campbell ZT; Weichsel A; Montfort WR; Baldwin TO
    Biochemistry; 2009 Jul; 48(26):6085-94. PubMed ID: 19435287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic studies of cyclohexanone monooxygenase: chemical properties of intermediates involved in catalysis.
    Sheng D; Ballou DP; Massey V
    Biochemistry; 2001 Sep; 40(37):11156-67. PubMed ID: 11551214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of long-chain alkane monooxygenase (LadA) in complex with coenzyme FMN: unveiling the long-chain alkane hydroxylase.
    Li L; Liu X; Yang W; Xu F; Wang W; Feng L; Bartlam M; Wang L; Rao Z
    J Mol Biol; 2008 Feb; 376(2):453-65. PubMed ID: 18164311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.