These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 32951836)

  • 61. Improvement of the fungal enzyme pyranose 2-oxidase using protein engineering.
    Heckmann-Pohl DM; Bastian S; Altmeier S; Antes I
    J Biotechnol; 2006 Jun; 124(1):26-40. PubMed ID: 16569455
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Linker length and flexibility induces new cellobiohydrolase activity of PoCel6A from Penicillium oxalicum.
    Gao L; Wang L; Jiang X; Qu Y
    Biotechnol J; 2015 Jun; 10(6):899-904. PubMed ID: 25866282
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Fungal aryl-alcohol oxidase: a peroxide-producing flavoenzyme involved in lignin degradation.
    Hernández-Ortega A; Ferreira P; Martínez AT
    Appl Microbiol Biotechnol; 2012 Feb; 93(4):1395-410. PubMed ID: 22249717
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Enzymatic versatility and thermostability of a new aryl-alcohol oxidase from Thermothelomyces thermophilus M77.
    Kadowaki MAS; Higasi PMR; de Godoy MO; de Araújo EA; Godoy AS; Prade RA; Polikarpov I
    Biochim Biophys Acta Gen Subj; 2020 Oct; 1864(10):129681. PubMed ID: 32653619
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Characterization and crystal structure of a first fungal glyoxylate reductase from Paecilomyes thermophila.
    Duan X; Hu S; Zhou P; Zhou Y; Liu Y; Jiang Z
    Enzyme Microb Technol; 2014 Jun; 60():72-9. PubMed ID: 24835102
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Novel structural features in the GMC family of oxidoreductases revealed by the crystal structure of fungal aryl-alcohol oxidase.
    Fernández IS; Ruíz-Dueñas FJ; Santillana E; Ferreira P; Martínez MJ; Martínez AT; Romero A
    Acta Crystallogr D Biol Crystallogr; 2009 Nov; 65(Pt 11):1196-205. PubMed ID: 19923715
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Characterization of a novel l-amino acid oxidase with protein oxidizing activity from Penicillium steckii AIU 027.
    Isobe K; Taira R; Hoshi Y; Matsuda S; Yamada M; Hibi M; Kishino S; Ogawa J
    J Biosci Bioeng; 2014 Jun; 117(6):690-5. PubMed ID: 24333187
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Enzymatic synthesis of vanillin.
    van den Heuvel RH; Fraaije MW; Laane C; van Berkel WJ
    J Agric Food Chem; 2001 Jun; 49(6):2954-8. PubMed ID: 11409992
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Xylan binding subsite mapping in the xylanase from Penicillium simplicissimum using xylooligosaccharides as cryo-protectant.
    Schmidt A; Gübitz GM; Kratky C
    Biochemistry; 1999 Feb; 38(8):2403-12. PubMed ID: 10029534
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Disulfide Bond Engineering of an Endoglucanase from
    Bashirova A; Pramanik S; Volkov P; Rozhkova A; Nemashkalov V; Zorov I; Gusakov A; Sinitsyn A; Schwaneberg U; Davari MD
    Int J Mol Sci; 2019 Mar; 20(7):. PubMed ID: 30935060
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Structure of the xylanase from Penicillium simplicissimum.
    Schmidt A; Schlacher A; Steiner W; Schwab H; Kratky C
    Protein Sci; 1998 Oct; 7(10):2081-8. PubMed ID: 9792094
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Structure-Based Engineering of Phanerochaete chrysosporium Alcohol Oxidase for Enhanced Oxidative Power toward Glycerol.
    Nguyen QT; Romero E; Dijkman WP; de Vasconcellos SP; Binda C; Mattevi A; Fraaije MW
    Biochemistry; 2018 Oct; 57(43):6209-6218. PubMed ID: 30272958
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Crystallographic analysis and structure-guided engineering of NADPH-dependent Ralstonia sp. alcohol dehydrogenase toward NADH cosubstrate specificity.
    Lerchner A; Jarasch A; Meining W; Schiefner A; Skerra A
    Biotechnol Bioeng; 2013 Nov; 110(11):2803-14. PubMed ID: 23686719
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Involvement of Tyr24 and Trp108 in substrate binding and substrate specificity of glycolate oxidase.
    Stenberg K; Clausen T; Lindqvist Y; Macheroux P
    Eur J Biochem; 1995 Mar; 228(2):408-16. PubMed ID: 7705356
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Direct comparison of gluco-oligosaccharide oxidase variants and glucose oxidase: substrate range and H
    Vuong TV; Foumani M; MacCormick B; Kwan R; Master ER
    Sci Rep; 2016 Nov; 6():37356. PubMed ID: 27869125
    [TBL] [Abstract][Full Text] [Related]  

  • 76. alpha-Galactosidases of Penicillium simplicissimum: production, purification and characterization of the gene encoding AGLI.
    Luonteri E; Alatalo E; Siika-Aho M; Penttilä M; Tenkanen M
    Biotechnol Appl Biochem; 1998 Oct; 28 ( Pt 2)():179-88. PubMed ID: 9756469
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Modified substrate specificity of L-hydroxyisocaproate dehydrogenase derived from structure-based protein engineering.
    Feil IK; Hendle J; Schomburg D
    Protein Eng; 1997 Mar; 10(3):255-62. PubMed ID: 9153075
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Isolation and properties of xyloglucanases of Penicillium sp.
    Sinitsyna OA; Fedorova EA; Pravilnikov AG; Rozhkova AM; Skomarovsky AA; Matys VY; Bubnova TM; Okunev ON; Vinetsky YP; Sinitsyn AP
    Biochemistry (Mosc); 2010 Jan; 75(1):41-9. PubMed ID: 20331423
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Crystal structure of the 270 kDa homotetrameric lignin-degrading enzyme pyranose 2-oxidase.
    Hallberg BM; Leitner C; Haltrich D; Divne C
    J Mol Biol; 2004 Aug; 341(3):781-96. PubMed ID: 15288786
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Inverting the enantioselectivity of a carbonyl reductase via substrate-enzyme docking-guided point mutation.
    Zhu D; Yang Y; Majkowicz S; Pan TH; Kantardjieff K; Hua L
    Org Lett; 2008 Feb; 10(4):525-8. PubMed ID: 18205368
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.