BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 32951947)

  • 1. Base Editing Landscape Extends to Perform Transversion Mutation.
    Molla KA; Qi Y; Karmakar S; Baig MJ
    Trends Genet; 2020 Dec; 36(12):899-901. PubMed ID: 32951947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adenine transversion editors enable precise, efficient A•T-to-C•G base editing in mammalian cells and embryos.
    Chen L; Hong M; Luan C; Gao H; Ru G; Guo X; Zhang D; Zhang S; Li C; Wu J; Randolph PB; Sousa AA; Qu C; Zhu Y; Guan Y; Wang L; Liu M; Feng B; Song G; Liu DR; Li D
    Nat Biotechnol; 2024 Apr; 42(4):638-650. PubMed ID: 37322276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas-Mediated Base Editing: Technical Considerations and Practical Applications.
    Molla KA; Yang Y
    Trends Biotechnol; 2019 Oct; 37(10):1121-1142. PubMed ID: 30995964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Precise in vivo functional analysis of DNA variants with base editing using ACEofBASEs target prediction.
    Cornean A; Gierten J; Welz B; Mateo JL; Thumberger T; Wittbrodt J
    Elife; 2022 Apr; 11():. PubMed ID: 35373735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Recent advances and applications of base editing systems].
    Xu X; Liu M
    Sheng Wu Gong Cheng Xue Bao; 2021 Jul; 37(7):2307-2321. PubMed ID: 34327897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing.
    Grünewald J; Zhou R; Lareau CA; Garcia SP; Iyer S; Miller BR; Langner LM; Hsu JY; Aryee MJ; Joung JK
    Nat Biotechnol; 2020 Jul; 38(7):861-864. PubMed ID: 32483364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient A·T-to-C·G Base Editing via Adenine Transversion Editors.
    Mahmood MA
    Cell Reprogram; 2023 Oct; 25(5):187-189. PubMed ID: 37725011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [CRISPR/Cas-mediated DNA base editing technology and its application in biomedicine and agriculture].
    Yu C; Mo J; Zhao X; Li G; Zhang X
    Sheng Wu Gong Cheng Xue Bao; 2021 Sep; 37(9):3071-3087. PubMed ID: 34622618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiplexed base editing through Cas12a variant-mediated cytosine and adenine base editors.
    Chen F; Lian M; Ma B; Gou S; Luo X; Yang K; Shi H; Xie J; Ge W; Ouyang Z; Lai C; Li N; Zhang Q; Jin Q; Liang Y; Chen T; Wang J; Zhao X; Li L; Yu M; Ye Y; Wang K; Wu H; Lai L
    Commun Biol; 2022 Nov; 5(1):1163. PubMed ID: 36323848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of an adenine base editor into a small, efficient cytosine base editor with low off-target activity.
    Neugebauer ME; Hsu A; Arbab M; Krasnow NA; McElroy AN; Pandey S; Doman JL; Huang TP; Raguram A; Banskota S; Newby GA; Tolar J; Osborn MJ; Liu DR
    Nat Biotechnol; 2023 May; 41(5):673-685. PubMed ID: 36357719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precision genome engineering through adenine and cytosine base editing.
    Kim JS
    Nat Plants; 2018 Mar; 4(3):148-151. PubMed ID: 29483683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytosine base editor 4 but not adenine base editor generates off-target mutations in mouse embryos.
    Lee HK; Smith HE; Liu C; Willi M; Hennighausen L
    Commun Biol; 2020 Jan; 3(1):19. PubMed ID: 31925293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expanding the base editing scope in rice by using Cas9 variants.
    Hua K; Tao X; Zhu JK
    Plant Biotechnol J; 2019 Feb; 17(2):499-504. PubMed ID: 30051586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adenine base editor engineering reduces editing of bystander cytosines.
    Jeong YK; Lee S; Hwang GH; Hong SA; Park SE; Kim JS; Woo JS; Bae S
    Nat Biotechnol; 2021 Nov; 39(11):1426-1433. PubMed ID: 34211162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in base editing with an emphasis on an AAV-based strategy.
    Kuang J; Lyu Q; Wang J; Cui Y; Zhao J
    Methods; 2021 Oct; 194():56-64. PubMed ID: 33774157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TadA orthologs enable both cytosine and adenine editing of base editors.
    Zhang S; Yuan B; Cao J; Song L; Chen J; Qiu J; Qiu Z; Zhao XM; Chen J; Cheng TL
    Nat Commun; 2023 Jan; 14(1):414. PubMed ID: 36702837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A/C Simultaneous Conversion Using the Dual Base Editor in Human Cells.
    Zhang X; Guan Y; Li D
    Methods Mol Biol; 2023; 2606():63-72. PubMed ID: 36592308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Base Editing: The Ever Expanding Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) Tool Kit for Precise Genome Editing in Plants.
    Monsur MB; Shao G; Lv Y; Ahmad S; Wei X; Hu P; Tang S
    Genes (Basel); 2020 Apr; 11(4):. PubMed ID: 32344599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Progress on base editing systems].
    Zong Y; Gao CX
    Yi Chuan; 2019 Sep; 41(9):777-800. PubMed ID: 31549678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The "new favorite" of gene editing technology-single base editors.
    Wei Y; Zhang XH; Li DL
    Yi Chuan; 2017 Dec; 39(12):1115-1121. PubMed ID: 29258982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.