BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 32951947)

  • 21. Dual base editor catalyzes both cytosine and adenine base conversions in human cells.
    Zhang X; Zhu B; Chen L; Xie L; Yu W; Wang Y; Li L; Yin S; Yang L; Hu H; Han H; Li Y; Wang L; Chen G; Ma X; Geng H; Huang W; Pang X; Yang Z; Wu Y; Siwko S; Kurita R; Nakamura Y; Yang L; Liu M; Li D
    Nat Biotechnol; 2020 Jul; 38(7):856-860. PubMed ID: 32483363
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineering a precise adenine base editor with minimal bystander editing.
    Chen L; Zhang S; Xue N; Hong M; Zhang X; Zhang D; Yang J; Bai S; Huang Y; Meng H; Wu H; Luan C; Zhu B; Ru G; Gao H; Zhong L; Liu M; Liu M; Cheng Y; Yi C; Wang L; Zhao Y; Song G; Li D
    Nat Chem Biol; 2023 Jan; 19(1):101-110. PubMed ID: 36229683
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prediction of synonymous corrections by the BE-FF computational tool expands the targeting scope of base editing.
    Rabinowitz R; Abadi S; Almog S; Offen D
    Nucleic Acids Res; 2020 Jul; 48(W1):W340-W347. PubMed ID: 32255179
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Base editors for simultaneous introduction of C-to-T and A-to-G mutations.
    Sakata RC; Ishiguro S; Mori H; Tanaka M; Tatsuno K; Ueda H; Yamamoto S; Seki M; Masuyama N; Nishida K; Nishimasu H; Arakawa K; Kondo A; Nureki O; Tomita M; Aburatani H; Yachie N
    Nat Biotechnol; 2020 Jul; 38(7):865-869. PubMed ID: 32483365
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Engineering domain-inlaid SaCas9 adenine base editors with reduced RNA off-targets and increased on-target DNA editing.
    Nguyen Tran MT; Mohd Khalid MKN; Wang Q; Walker JKR; Lidgerwood GE; Dilworth KL; Lisowski L; Pébay A; Hewitt AW
    Nat Commun; 2020 Sep; 11(1):4871. PubMed ID: 32978399
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Base editing and prime editing in laboratory animals.
    Caso F; Davies B
    Lab Anim; 2022 Feb; 56(1):35-49. PubMed ID: 33596731
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modular and Flexible Molecular Device for Simultaneous Cytosine and Adenine Base Editing at Random Genomic Loci in Filamentous Fungi.
    Duan Y; Tan Y; Chen X; Pei X; Li M
    ACS Synth Biol; 2023 Jul; 12(7):2147-2156. PubMed ID: 37428865
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of Base Editing Efficiencies and Outcomes Using DeepABE and DeepCBE.
    Park J; Kim HK
    Methods Mol Biol; 2023; 2606():23-32. PubMed ID: 36592305
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicting base editing outcomes using position-specific sequence determinants.
    Pallaseni A; Peets EM; Koeppel J; Weller J; Vanderstichele T; Ho UL; Crepaldi L; van Leeuwen J; Allen F; Parts L
    Nucleic Acids Res; 2022 Apr; 50(6):3551-3564. PubMed ID: 35286377
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SpG and SpRY variants expand the CRISPR toolbox for genome editing in zebrafish.
    Liang F; Zhang Y; Li L; Yang Y; Fei JF; Liu Y; Qin W
    Nat Commun; 2022 Jun; 13(1):3421. PubMed ID: 35701400
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Determinants of Base Editing Outcomes from Target Library Analysis and Machine Learning.
    Arbab M; Shen MW; Mok B; Wilson C; Matuszek Ż; Cassa CA; Liu DR
    Cell; 2020 Jul; 182(2):463-480.e30. PubMed ID: 32533916
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Highly efficient base editing with expanded targeting scope using SpCas9-NG in rabbits.
    Liu Z; Shan H; Chen S; Chen M; Song Y; Lai L; Li Z
    FASEB J; 2020 Jan; 34(1):588-596. PubMed ID: 31914687
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos.
    Zuo E; Sun Y; Wei W; Yuan T; Ying W; Sun H; Yuan L; Steinmetz LM; Li Y; Yang H
    Science; 2019 Apr; 364(6437):289-292. PubMed ID: 30819928
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Precision genome editing using cytosine and adenine base editors in mammalian cells.
    Huang TP; Newby GA; Liu DR
    Nat Protoc; 2021 Feb; 16(2):1089-1128. PubMed ID: 33462442
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Generation of C-to-G transversion in mouse embryos via CG editors.
    Cao T; Liu S; Qiu Y; Gao M; Wu J; Wu G; Liang P; Huang J
    Transgenic Res; 2022 Oct; 31(4-5):445-455. PubMed ID: 35704130
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Progression and application of CRISPR-Cas genomic editors.
    Yang L; Tang J; Ma X; Lin Y; Ma G; Shan M; Wang L; Yang Y
    Methods; 2021 Oct; 194():65-74. PubMed ID: 33774156
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Principle and development of single base editing technology and its application in livestock breeding].
    Zhang Y; Zhang C; Wu Y; Yu R; Su J
    Sheng Wu Gong Cheng Xue Bao; 2023 Jan; 39(1):19-33. PubMed ID: 36738198
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single-nucleotide editing: From principle, optimization to application.
    Tang J; Lee T; Sun T
    Hum Mutat; 2019 Dec; 40(12):2171-2183. PubMed ID: 31131955
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells.
    Kurt IC; Zhou R; Iyer S; Garcia SP; Miller BR; Langner LM; Grünewald J; Joung JK
    Nat Biotechnol; 2021 Jan; 39(1):41-46. PubMed ID: 32690971
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CRISPR/Cas9-deaminase enables robust base editing in Rhodobacter sphaeroides 2.4.1.
    Luo Y; Ge M; Wang B; Sun C; Wang J; Dong Y; Xi JJ
    Microb Cell Fact; 2020 Apr; 19(1):93. PubMed ID: 32334589
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.