These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 32952319)

  • 1. Social distancing in airplane seat assignments.
    Salari M; Milne RJ; Delcea C; Kattan L; Cotfas LA
    J Air Transp Manag; 2020 Oct; 89():101915. PubMed ID: 32952319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Health risks of airplane boarding methods with apron buses when some passengers disregard safe social distancing.
    Milne RJ; Cotfas LA; Delcea C; Crăciun L; Molănescu AG
    PLoS One; 2022; 17(8):e0271544. PubMed ID: 35913941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Airplane Boarding Methods that Reduce Risk from COVID-19.
    John Milne R; Delcea C; Cotfas LA
    Saf Sci; 2020 Oct; ():105061. PubMed ID: 33132534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of Boarding Methods Adapted for Social Distancing When Using Apron Buses.
    Milne RJ; Delcea C; Cotfas LA; Ioanas C
    IEEE Access; 2020; 8():151650-151667. PubMed ID: 34786284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adapting the reverse pyramid airplane boarding method for social distancing in times of COVID-19.
    Milne RJ; Cotfas LA; Delcea C; Crăciun L; Molănescu AG
    PLoS One; 2020; 15(11):e0242131. PubMed ID: 33147603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seat Assignments With Physical Distancing in Single-Destination Public Transit Settings.
    Moore JF; Carvalho A; Davis GA; Abulhassan Y; Megahed FM
    IEEE Access; 2021; 9():42985-42993. PubMed ID: 35662894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lorentzian geometry and variability reduction in airplane boarding: Slow passengers first outperforms random boarding.
    Erland S; Kaupužs J; Steiner A; Bachmat E
    Phys Rev E; 2021 Jun; 103(6-1):062310. PubMed ID: 34271722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laboratory Modeling of SARS-CoV-2 Exposure Reduction Through Physically Distanced Seating in Aircraft Cabins Using Bacteriophage Aerosol - November 2020.
    Dietrich WL; Bennett JS; Jones BW; Hosni MH
    MMWR Morb Mortal Wkly Rep; 2021 Apr; 70(16):595-599. PubMed ID: 33886531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lorentzian-geometry-based analysis of airplane boarding policies highlights "slow passengers first" as better.
    Erland S; Kaupužs J; Frette V; Pugatch R; Bachmat E
    Phys Rev E; 2019 Dec; 100(6-1):062313. PubMed ID: 31962412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A combined optimization-simulation approach for modified outside-in boarding under COVID-19 regulations including limited baggage compartment capacities.
    Schultz M; Soolaki M; Salari M; Bakhshian E
    J Air Transp Manag; 2023 Jan; 106():102258. PubMed ID: 35892062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Social distancing and revenue management-A post-pandemic adaptation for railways.
    Haque MT; Hamid F
    Omega; 2023 Jan; 114():102737. PubMed ID: 35992227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time needed to board an airplane: a power law and the structure behind it.
    Frette V; Hemmer PC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011130. PubMed ID: 22400535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From bad to worse: airline boarding changes in response to COVID-19.
    Islam T; Lahijani MS; Srinivasan A; Namilae S; Mubayi A; Scotch M
    R Soc Open Sci; 2021 Apr; 8(4):201019. PubMed ID: 34007455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of in-seat exercising on comfort perception of airplane passengers.
    Bouwens JMA; Fasulo L; Hiemstra-van Mastrigt S; Schultheis UW; Naddeo A; Vink P
    Appl Ergon; 2018 Nov; 73():7-12. PubMed ID: 30098644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of human movement on airborne disease transmission in an airplane cabin: study using numerical modeling and quantitative risk analysis.
    Han Z; To GN; Fu SC; Chao CY; Weng W; Huang Q
    BMC Infect Dis; 2014 Aug; 14():434. PubMed ID: 25098254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An optimization model to assign seats in long distance trains to minimize SARS-CoV-2 diffusion.
    Haque MT; Hamid F
    Transp Res Part A Policy Pract; 2022 Aug; 162():104-120. PubMed ID: 35665304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of COVID-19 on rail passengers' crowding perceptions.
    Aghabayk K; Esmailpour J; Shiwakoti N
    Transp Res Part A Policy Pract; 2021 Dec; 154():186-202. PubMed ID: 34707330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the 2-Row Rule for Infectious Disease Transmission on Aircraft.
    Hertzberg VS; Weiss H
    Ann Glob Health; 2016; 82(5):819-823. PubMed ID: 28283135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SARS-CoV-2 aerosol risk models for the Airplane Seating Assignment Problem.
    Pavlik JA; Ludden IG; Jacobson SH
    J Air Transp Manag; 2022 Mar; 99():102175. PubMed ID: 34876782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Method to evaluate the effect of safety belt use by rear seat passengers on the injury severity of front seat occupants.
    Shimamura M; Yamazaki M; Fujita G
    Accid Anal Prev; 2005 Jan; 37(1):5-17. PubMed ID: 15607270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.