These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 32952377)
1. Analyses of Transient Behaviors of No-Insulation REBCO Pancake Coils During Sudden Discharging and Overcurrent. Wang T; Noguchi S; Wang X; Arakawa I; Minami K; Monma K; Ishiyama A; Hahn S; Iwasa Y IEEE Trans Appl Supercond; 2015 Jun; 25(3):. PubMed ID: 32952377 [TBL] [Abstract][Full Text] [Related]
2. HTS Pancake Coils Without Turn-to-Turn Insulation. Hahn S; Park DK; Bascuñán J; Iwasa Y IEEE Trans Appl Supercond; 2011 Jun; 21(3):. PubMed ID: 32952372 [TBL] [Abstract][Full Text] [Related]
3. Turn-to-turn contact characteristics for an equivalent circuit model of no-insulation ReBCO pancake coil. Wang X; Hahn S; Kim Y; Bascuñán J; Voccio J; Lee H; Iwasa Y Supercond Sci Technol; 2013; 26(3):. PubMed ID: 32863599 [TBL] [Abstract][Full Text] [Related]
4. Effect of Winding Tension on Electrical Behaviors of a No-Insulation ReBCO Pancake Coil. Kim KL; Hahn S; Kim Y; Yang DG; Song JB; Bascuñán J; Lee H; Iwasa Y IEEE Trans Appl Supercond; 2014 Jun; 24(3):. PubMed ID: 32863685 [TBL] [Abstract][Full Text] [Related]
5. Sudden-Discharging Quench Dynamics in a No-Insulation Superconducting Coil. Dong F; Park D; Kim J; Bascuñán J; Iwasa Y IEEE Trans Appl Supercond; 2023 Aug; 33(5):. PubMed ID: 36816464 [TBL] [Abstract][Full Text] [Related]
6. Experimental and Numerical Studies on a Method to Mitigate Screening Current-Induced Field for No-Insulation REBCO Coils. Lee J; Park D; Li Y; Choi YH; Michael PC; Bascuñân J; Iwasa Y IEEE Trans Appl Supercond; 2019 Aug; 29(5):. PubMed ID: 31178651 [TBL] [Abstract][Full Text] [Related]
7. Construction and Test Results of Coils 2 and 3 of a 3-Nested-Coil 800-MHz REBCO Insert for the MIT 1.3-GHz LTS/HTS NMR Magnet. Park D; Bascuñán J; Michael PC; Lee J; Hahn S; Iwasa Y IEEE Trans Appl Supercond; 2018 Apr; 28(3):. PubMed ID: 29628751 [TBL] [Abstract][Full Text] [Related]
8. Quench Analyses of the MIT 1.3-GHz LTS/HTS NMR Magnet. Noguchi S; Park D; Choi Y; Lee J; Li Y; Michael PC; Bascuñán J; Hahn S; Iwasa Y IEEE Trans Appl Supercond; 2019 Aug; 29(5):. PubMed ID: 31178650 [TBL] [Abstract][Full Text] [Related]
9. Construction and Test Results of Coil 2 of a Three-Coil 800-MHz REBCO Insert for the 1.3-GHz High-Resolution NMR Magnet. Bascuñán J; Michael P; Hahn S; Lecrevisse T; Iwasa Y IEEE Trans Appl Supercond; 2017 Jun; 27(4):. PubMed ID: 28919700 [TBL] [Abstract][Full Text] [Related]
10. A surface-shunting method for the prevention of a fault-mode-induced quench in high-field no-insulation REBCO magnets. Dong F; Park D; Kim J; Bascuñán J; Iwasa Y Supercond Sci Technol; 2024 Nov; 37(11):. PubMed ID: 39430005 [TBL] [Abstract][Full Text] [Related]
11. On fault-mode phenomenon in no-insulation superconducting magnets: A preventive approach. Dong F; Park D; Lee W; Hao L; Huang Z; Bascuñán J; Jin Z; Iwasa Y Appl Phys Lett; 2022 Nov; 121(19):194101. PubMed ID: 36388449 [TBL] [Abstract][Full Text] [Related]
12. Investigation on quench initiation and propagation characteristics of GdBCO coil co-wound with a stainless steel tape as turn-to-turn metallic insulation. Kim YG; Song JB; Choi YH; Yang DG; Kim SG; Lee HG Rev Sci Instrum; 2016 Nov; 87(11):114701. PubMed ID: 27910603 [TBL] [Abstract][Full Text] [Related]
13. Persistent-current switch for pancake coils of rare earth-barium-copper-oxide high-temperature superconductor: Design and test results of a double-pancake coil operated in liquid nitrogen (77-65 K) and in solid nitrogen (60-57 K). Qu T; Michael PC; Voccio J; Bascuñán J; Hahn S; Iwasa Y Appl Phys Lett; 2016 Aug; 109(8):082601. PubMed ID: 27647942 [TBL] [Abstract][Full Text] [Related]
14. Hot-Spot Modeling of REBCO NI Pancake Coil: Analytical and Experimental Approaches. Lee W; Park D; Choi Y; Li Y; Bascuñán J; Iwasa Y IEEE Trans Appl Supercond; 2021 Aug; 31(5):. PubMed ID: 34012222 [TBL] [Abstract][Full Text] [Related]
15. A (RE)BCO Pancake Winding With Metal-as-Insulation. Lécrevisse T; Iwasa Y IEEE Trans Appl Supercond; 2016 Apr; 26(3):. PubMed ID: 33132669 [TBL] [Abstract][Full Text] [Related]
16. Self-Protection Characteristic Comparison between No-Insulation, Metal-as-Insulation, and Surface-Shunted-Metal-as-Insulation REBCO coils. Kim J; Park D; Dong F; Lanzrath A; Lee W; Bascuñán J; Iwasa Y IEEE Trans Appl Supercond; 2023 Aug; 33(5):. PubMed ID: 38046815 [TBL] [Abstract][Full Text] [Related]
17. Numerical Study on Mechanical Responses during Quench Protection in High-Temperature Superconducting Coils. Jiao R; Guan M Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374541 [TBL] [Abstract][Full Text] [Related]
18. Assembly and Test of a 3-Nested-Coil 800-MHz REBCO Insert (H800) for the MIT 1.3 GHz LTS/HTS NMR Magnet. Michael PC; Park D; Choi YH; Lee J; Li Y; Bascuñán J; Noguchi S; Hahn S; Iwasa Y IEEE Trans Appl Supercond; 2019 Aug; 29(5):. PubMed ID: 31130801 [TBL] [Abstract][Full Text] [Related]
19. A Cryogen-Free 25-T REBCO Magnet with the Extreme-No-Insulation Winding Technique. Park D; Lee W; Bascuñán J; Kim HM; Iwasa Y IEEE Trans Appl Supercond; 2022 Sep; 32(6):. PubMed ID: 36185339 [TBL] [Abstract][Full Text] [Related]
20. Test of an 8.66-T REBCO Insert Coil with Overbanding Radial Build for a 1.3-GHz LTS/HTS NMR Magnet. Qu T; Michael PC; Bascuñán J; Lécrevisse T; Guan M; Hahn S; Iwasa Y IEEE Trans Appl Supercond; 2017 Jun; 27(4):. PubMed ID: 28827976 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]