These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 32952482)

  • 1. Novel Approach for Efficient Recovery for Spinal Cord Injury Repair via Biofabricated Nano-Cerium Oxide Loaded PCL With Resveratrol to Improve in Vitro Biocompatibility and Autorecovery Abilities.
    Dong L; Kang X; Ma Q; Xu Z; Sun H; Hao D; Chen X
    Dose Response; 2020; 18(3):1559325820933518. PubMed ID: 32952482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of cerium oxide nanoparticles loaded on chitosan for enhanced auto-catalytic regenerative ability and biocompatibility for the spinal cord injury repair.
    Fang X; Song H
    J Photochem Photobiol B; 2019 Feb; 191():83-87. PubMed ID: 30594737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of the hydrophobic domain in poly(ethylene oxide)-poly(varepsilon-caprolactone) based nano-carriers for the solubilization and delivery of Amphotericin B.
    Falamarzian A; Lavasanifar A
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):313-20. PubMed ID: 20674292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnesium oxide nanoparticle-loaded polycaprolactone composite electrospun fiber scaffolds for bone-soft tissue engineering applications: in-vitro and in-vivo evaluation.
    Suryavanshi A; Khanna K; Sindhu KR; Bellare J; Srivastava R
    Biomed Mater; 2017 Sep; 12(5):055011. PubMed ID: 28944766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasmall cerium oxide nanoparticles as highly sensitive X-ray contrast agents and their antioxidant effect.
    Ali Al Saidi AK; Ghazanfari A; Baek A; Tegafaw T; Ahmad MY; Zhao D; Liu Y; Yang JU; Park JA; Yang BW; Chae KS; Nam SW; Chang Y; Lee GH
    RSC Adv; 2024 Jan; 14(6):3647-3658. PubMed ID: 38268539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A facile approach for synthesis of nano-CeO
    Gao Y; Chen X; Liu H
    J Photochem Photobiol B; 2018 Oct; 187():184-189. PubMed ID: 30173122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro biocompatibility evaluation of novel urethane-siloxane co-polymers based on poly(ϵ-caprolactone)-block-poly(dimethylsiloxane)-block-poly(ϵ-caprolactone).
    Pergal MV; Antic VV; Tovilovic G; Nestorov J; Vasiljevic-Radovic D; Djonlagic J
    J Biomater Sci Polym Ed; 2012; 23(13):1629-57. PubMed ID: 21888759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrospun polycaprolactone/hydroxyapatite/ZnO nanofibers as potential biomaterials for bone tissue regeneration.
    Shitole AA; Raut PW; Sharma N; Giram P; Khandwekar AP; Garnaik B
    J Mater Sci Mater Med; 2019 Apr; 30(5):51. PubMed ID: 31011810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of hemoglobin-loaded nano-sized particles with porous structure as oxygen carriers.
    Zhao J; Liu CS; Yuan Y; Tao XY; Shan XQ; Sheng Y; Wu F
    Biomaterials; 2007 Mar; 28(7):1414-22. PubMed ID: 17126898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nano-CeO2 decorated graphene based chitosan nanocomposites as enzymatic biosensing platform: fabrication and cellular biocompatibility assessment.
    De S; Mohanty S; Nayak SK
    Bioprocess Biosyst Eng; 2015 Sep; 38(9):1671-83. PubMed ID: 25980384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of polyaspartic acid peptide-poly (ethylene glycol)-poly (ε-caprolactone) nanoparticles as a carrier of hydrophobic drugs targeting cancer metastasized to bone.
    Liu J; Zeng Y; Shi S; Xu L; Zhang H; Pathak JL; Pan Y
    Int J Nanomedicine; 2017; 12():3561-3575. PubMed ID: 28507436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphology, thermal and mechanical properties of poly (ε-caprolactone) biocomposites reinforced with nano-hydroxyapatite decorated graphene.
    Zhou K; Gao R; Jiang S
    J Colloid Interface Sci; 2017 Jun; 496():334-342. PubMed ID: 28237751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, characterization and thermal properties of chitin-g-poly(epsilon-caprolactone) copolymers by using chitin gel.
    Jayakumar R; Tamura H
    Int J Biol Macromol; 2008 Jul; 43(1):32-6. PubMed ID: 17950453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone marrow mesenchymal stem cells encapsulated thermal-responsive hydrogel network bridges combined photo-plasmonic nanoparticulate system for the treatment of urinary bladder dysfunction after spinal cord injury.
    An H; Li Q; Wen J
    J Photochem Photobiol B; 2020 Jan; 203():111741. PubMed ID: 31901721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ocular biocompatibility of dexamethasone acetate loaded poly(ɛ-caprolactone) nanofibers.
    Da Silva GR; Lima TH; Fernandes-Cunha GM; Oréfice RL; Da Silva-Cunha A; Zhao M; Behar-Cohen F
    Eur J Pharm Biopharm; 2019 Sep; 142():20-30. PubMed ID: 31129274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oridonin-loaded poly(epsilon-caprolactone)-poly(ethylene oxide)-poly(epsilon-caprolactone) copolymer nanoparticles: preparation, characterization, and antitumor activity on mice with transplanted hepatoma.
    Feng N; Wu P; Li Q; Mei Y; Shi S; Yu J; Xu J; Liu Y; Wang Y
    J Drug Target; 2008 Jul; 16(6):479-85. PubMed ID: 18604660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons.
    Das M; Patil S; Bhargava N; Kang JF; Riedel LM; Seal S; Hickman JJ
    Biomaterials; 2007 Apr; 28(10):1918-25. PubMed ID: 17222903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Paclitaxel-incorporated nanoparticles improve functional recovery after spinal cord injury.
    Zhang X; Xiong W; Kong G; Zhen Y; Zeng Q; Wang S; Chen S; Gu J; Li C; Guo K
    Front Pharmacol; 2022; 13():957433. PubMed ID: 36016549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bactericidal Effect of Lauric Acid-Loaded PCL-PEG-PCL Nano-Sized Micelles on Skin Commensal Propionibacterium acnes.
    Tran TQ; Hsieh MF; Chang KL; Pho QH; Nguyen VC; Cheng CY; Huang CM
    Polymers (Basel); 2016 Aug; 8(9):. PubMed ID: 30974595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineered electrospun poly(caprolactone)/polycaprolactone-g-hydroxyapatite nano-fibrous scaffold promotes human fibroblasts adhesion and proliferation.
    Keivani F; Shokrollahi P; Zandi M; Irani S; F Shokrolahi ; Khorasani SC
    Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():78-88. PubMed ID: 27523999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.