These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 32952728)
21. Dendronised Ni(ii) porphyrins as photoswitchable contrast agents for MRI. Dommaschk M; Gröbner J; Wellm V; Hövener JB; Riedel C; Herges R Phys Chem Chem Phys; 2019 Nov; 21(44):24296-24299. PubMed ID: 31686082 [TBL] [Abstract][Full Text] [Related]
22. Light-controlled switching of the spin state of iron(III). Shankar S; Peters M; Steinborn K; Krahwinkel B; Sönnichsen FD; Grote D; Sander W; Lohmiller T; Rüdiger O; Herges R Nat Commun; 2018 Nov; 9(1):4750. PubMed ID: 30420598 [TBL] [Abstract][Full Text] [Related]
23. Ultrafast Photodynamics of an Azopyridine-Functionalized Iron(II) Complex: Implications for the Concept of Ligand-Driven Light-Induced Spin Change. Megow S; Fitschen HL; Tuczek F; Temps F J Phys Chem Lett; 2019 Oct; 10(20):6048-6054. PubMed ID: 31549841 [TBL] [Abstract][Full Text] [Related]
24. Resonance Raman studies on the ligand-iron interactions in hemoproteins and metallo-porphyrins. Kitagawa T; Ozaki Y; Kyogoku Y Adv Biophys; 1978; 11():153-96. PubMed ID: 27953 [TBL] [Abstract][Full Text] [Related]
25. Single azopyridine-substituted porphyrin molecules for configurational and electronic switching. Matino F; Schull G; Jana U; Köhler F; Berndt R; Herges R Chem Commun (Camb); 2010 Sep; 46(36):6780-2. PubMed ID: 20733982 [TBL] [Abstract][Full Text] [Related]
26. Coordination-induced spin crossover (CISCO) through axial bonding of substituted pyridines to nickel-porphyrins: sigma-donor versus pi-acceptor effects. Thies S; Bornholdt C; Köhler F; Sönnichsen FD; Näther C; Tuczek F; Herges R Chemistry; 2010 Sep; 16(33):10074-83. PubMed ID: 20648489 [TBL] [Abstract][Full Text] [Related]
27. Four-Coordinate, Low-Spin (S = 0) and Six-Coordinate, High-Spin (S = 1) Nickel(II) Complexes of Tetraphenylporphyrins with beta-Pyrrole Electron-Withdrawing Substituents: Porphyrin-Core Expansion and Conformation. Duval H; Bulach V; Fischer J; Weiss R Inorg Chem; 1999 Nov; 38(24):5495-5501. PubMed ID: 11671276 [TBL] [Abstract][Full Text] [Related]
28. State-selective electron transfer in an unsymmetric acceptor-Zn(II)porphyrin-acceptor triad: toward a controlled directionality of electron transfer from the porphyrin S2 and S1 states as a basis for a molecular switch. Wallin S; Monnereau C; Blart E; Gankou JR; Odobel F; Hammarström L J Phys Chem A; 2010 Feb; 114(4):1709-21. PubMed ID: 20063874 [TBL] [Abstract][Full Text] [Related]
29. Effects of Temperature, Axial Ligand, and Photoexcitation on the Structure and Spin-State of Nickel(II) Complexes with Water-Soluble 5,10,15,20-Tetrakis(1-methylpyridinium-4-yl)porphyrin. Major MM; Valicsek Z; Horváth O Molecules; 2024 Jan; 29(2):. PubMed ID: 38257224 [TBL] [Abstract][Full Text] [Related]
30. Photoswitchable Enantioselective and Helix-Sense Controlled Living Polymerization. Zhou L; He K; Kang SM; Zhou XY; Zou H; Liu N; Wu ZQ Angew Chem Int Ed Engl; 2023 Dec; 62(52):e202310105. PubMed ID: 37957131 [TBL] [Abstract][Full Text] [Related]
31. Synergistic "ping-pong" energy transfer for efficient light activation in a chromophore-catalyst dyad. Quaranta A; Charalambidis G; Herrero C; Margiola S; Leibl W; Coutsolelos A; Aukauloo A Phys Chem Chem Phys; 2015 Oct; 17(37):24166-72. PubMed ID: 26327298 [TBL] [Abstract][Full Text] [Related]
32. Chemical tuning of photoswitchable azobenzenes: a photopharmacological case study using nicotinic transmission. Sansalone L; Zhao J; Richers MT; Ellis-Davies GCR Beilstein J Org Chem; 2019; 15():2812-2821. PubMed ID: 31807216 [TBL] [Abstract][Full Text] [Related]
33. Acid-base-controlled stereoselective metalation of overhanging carboxylic acid porphyrins: consequences for the formation of heterobimetallic complexes. Le Gac S; Najjari B; Dorcet V; Roisnel T; Fusaro L; Luhmer M; Furet E; Halet JF; Boitrel B Chemistry; 2013 Aug; 19(33):11021-38. PubMed ID: 23813639 [TBL] [Abstract][Full Text] [Related]
34. Hierarchical Synthesis, Structure, and Photophysical Properties of Gallium- and Ruthenium-Porphyrins with Axially Bonded Azo Ligands. Gao Y; Walter V; Ferguson MJ; Tykwinski RR Chemistry; 2020 Dec; 26(70):16712-16720. PubMed ID: 32706454 [TBL] [Abstract][Full Text] [Related]
35. Diphenylphosphine-Oxide-Fused and Diphenylphosphine-Fused Porphyrins: Synthesis, Tunable Electronic Properties, and Formation of Cofacial Dimers. Fujimoto K; Kasuga Y; Fukui N; Osuka A Chemistry; 2017 May; 23(28):6741-6745. PubMed ID: 28397373 [TBL] [Abstract][Full Text] [Related]
36. Reversible photochemical control of singlet oxygen generation using diarylethene photochromic switches. Hou L; Zhang X; Pijper TC; Browne WR; Feringa BL J Am Chem Soc; 2014 Jan; 136(3):910-3. PubMed ID: 24392882 [TBL] [Abstract][Full Text] [Related]
38. Equilibrium of low- and high-spin states of Ni(II) complexes controlled by the donor ability of the bidentate ligands. Ohtsu H; Tanaka K Inorg Chem; 2004 May; 43(9):3024-30. PubMed ID: 15106994 [TBL] [Abstract][Full Text] [Related]
39. Metalloporphyrins as Catalytic Models for Studying Hydrogen and Oxygen Evolution and Oxygen Reduction Reactions. Li X; Lei H; Xie L; Wang N; Zhang W; Cao R Acc Chem Res; 2022 Mar; 55(6):878-892. PubMed ID: 35192330 [TBL] [Abstract][Full Text] [Related]