BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 32952746)

  • 1. Glioma progression and recurrence involving maintenance and expansion strategies of glioma stem cells by organizing self-advantageous niche microenvironments.
    Taga T; Tabu K
    Inflamm Regen; 2020; 40():33. PubMed ID: 32952746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Synthetic Polymer Scaffold Reveals the Self-Maintenance Strategies of Rat Glioma Stem Cells by Organization of the Advantageous Niche.
    Tabu K; Muramatsu N; Mangani C; Wu M; Zhang R; Kimura T; Terashima K; Bizen N; Kimura R; Wang W; Murota Y; Kokubu Y; Nobuhisa I; Kagawa T; Kitabayashi I; Bradley M; Taga T
    Stem Cells; 2016 May; 34(5):1151-62. PubMed ID: 26822103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glioma stem cell (GSC)-derived autoschizis-like products confer GSC niche properties involving M1-like tumor-associated macrophages.
    Tabu K; Liu W; Kosaku A; Terashima K; Murota Y; Aimaitijiang A; Nobuhisa I; Hide T; Taga T
    Stem Cells; 2020 Aug; 38(8):921-935. PubMed ID: 32346916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cancer ego-system in glioma: an iron-replenishing niche network systemically self-organized by cancer stem cells.
    Tabu K; Taga T
    Inflamm Regen; 2022 Nov; 42(1):54. PubMed ID: 36451253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of protumoral CD11c(high) macrophages by glioma cancer stem cells through GM-CSF.
    Kokubu Y; Tabu K; Muramatsu N; Wang W; Murota Y; Nobuhisa I; Jinushi M; Taga T
    Genes Cells; 2016 Mar; 21(3):241-51. PubMed ID: 26805963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cancer stem cell niche(s): the crosstalk between glioma stem cells and their microenvironment.
    Filatova A; Acker T; Garvalov BK
    Biochim Biophys Acta; 2013 Feb; 1830(2):2496-508. PubMed ID: 23079585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A niche-mimicking polymer hydrogel-based approach to identify molecular targets for tackling human pancreatic cancer stem cells.
    Murota Y; Nagane M; Wu M; Santra M; Venkateswaran S; Tanaka S; Bradley M; Taga T; Tabu K
    Inflamm Regen; 2023 Sep; 43(1):46. PubMed ID: 37759310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A three-dimensional (3D) organotypic microfluidic model for glioma stem cells - Vascular interactions.
    Truong D; Fiorelli R; Barrientos ES; Melendez EL; Sanai N; Mehta S; Nikkhah M
    Biomaterials; 2019 Apr; 198():63-77. PubMed ID: 30098794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The hypoxic peri-arteriolar glioma stem cell niche, an integrated concept of five types of niches in human glioblastoma.
    Aderetti DA; Hira VVV; Molenaar RJ; van Noorden CJF
    Biochim Biophys Acta Rev Cancer; 2018 Apr; 1869(2):346-354. PubMed ID: 29684521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insulin signals control the competence of the Drosophila female germline stem cell niche to respond to Notch ligands.
    Hsu HJ; Drummond-Barbosa D
    Dev Biol; 2011 Feb; 350(2):290-300. PubMed ID: 21145317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glioma Stem Cells and Their Microenvironments: Providers of Challenging Therapeutic Targets.
    Codrici E; Enciu AM; Popescu ID; Mihai S; Tanase C
    Stem Cells Int; 2016; 2016():5728438. PubMed ID: 26977157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cancer stem cells and their niche in cancer progression and therapy.
    Liu Q; Guo Z; Li G; Zhang Y; Liu X; Li B; Wang J; Li X
    Cancer Cell Int; 2023 Dec; 23(1):305. PubMed ID: 38041196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cancer stem cells (CSCs) in cancer progression and therapy.
    Najafi M; Farhood B; Mortezaee K
    J Cell Physiol; 2019 Jun; 234(6):8381-8395. PubMed ID: 30417375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Drosophila putative histone acetyltransferase Enok maintains female germline stem cells through regulating Bruno and the niche.
    Xin T; Xuan T; Tan J; Li M; Zhao G; Li M
    Dev Biol; 2013 Dec; 384(1):1-12. PubMed ID: 24120347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drug Resistance Driven by Cancer Stem Cells and Their Niche.
    Prieto-Vila M; Takahashi RU; Usuba W; Kohama I; Ochiya T
    Int J Mol Sci; 2017 Dec; 18(12):. PubMed ID: 29194401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stem cell autotomy and niche interaction in different systems.
    Dorn DC; Dorn A
    World J Stem Cells; 2015 Jul; 7(6):922-44. PubMed ID: 26240680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular and Microenvironmental Determinants of Glioma Stem-Like Cell Survival and Invasion.
    Roos A; Ding Z; Loftus JC; Tran NL
    Front Oncol; 2017; 7():120. PubMed ID: 28670569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery of Power-Law Growth in the Self-Renewal of Heterogeneous Glioma Stem Cell Populations.
    Sugimori M; Hayakawa Y; Boman BM; Fields JZ; Awaji M; Kozano H; Tamura R; Yamamoto S; Ogata T; Yamada M; Endo S; Kurimoto M; Kuroda S
    PLoS One; 2015; 10(8):e0135760. PubMed ID: 26284929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reciprocal Network between Cancer Stem-Like Cells and Macrophages Facilitates the Progression and Androgen Deprivation Therapy Resistance of Prostate Cancer.
    Huang H; Wang C; Liu F; Li HZ; Peng G; Gao X; Dong KQ; Wang HR; Kong DP; Qu M; Dai LH; Wang KJ; Zhou Z; Yang J; Yang ZY; Cheng YQ; Tian QQ; Liu D; Xu CL; Xu DF; Cui XG; Sun YH
    Clin Cancer Res; 2018 Sep; 24(18):4612-4626. PubMed ID: 29691294
    [No Abstract]   [Full Text] [Related]  

  • 20. The Impact of the Tumor Microenvironment on the Properties of Glioma Stem-Like Cells.
    Audia A; Conroy S; Glass R; Bhat KPL
    Front Oncol; 2017; 7():143. PubMed ID: 28740831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.