BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 32953029)

  • 1. A cobalt phosphide catalyst for the hydrogenation of nitriles.
    Mitsudome T; Sheng M; Nakata A; Yamasaki J; Mizugaki T; Jitsukawa K
    Chem Sci; 2020 Jul; 11(26):6682-6689. PubMed ID: 32953029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-Crystal Cobalt Phosphide Nanorods as a High-Performance Catalyst for Reductive Amination of Carbonyl Compounds.
    Sheng M; Fujita S; Yamaguchi S; Yamasaki J; Nakajima K; Yamazoe S; Mizugaki T; Mitsudome T
    JACS Au; 2021 Apr; 1(4):501-507. PubMed ID: 34467312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nickel Carbide Nanoparticle Catalyst for Selective Hydrogenation of Nitriles to Primary Amines.
    Yamaguchi S; Kiyohira D; Tada K; Kawakami T; Miura A; Mitsudome T; Mizugaki T
    Chemistry; 2024 Mar; 30(13):e202303573. PubMed ID: 38179895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ni
    Fujita S; Yamaguchi S; Yamasaki J; Nakajima K; Yamazoe S; Mizugaki T; Mitsudome T
    Chemistry; 2021 Mar; 27(13):4439-4446. PubMed ID: 33283374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron phosphide nanocrystals as an air-stable heterogeneous catalyst for liquid-phase nitrile hydrogenation.
    Tsuda T; Sheng M; Ishikawa H; Yamazoe S; Yamasaki J; Hirayama M; Yamaguchi S; Mizugaki T; Mitsudome T
    Nat Commun; 2023 Sep; 14(1):5959. PubMed ID: 37770434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogenation of Nitriles and Ketones Catalyzed by an Air-Stable Bisphosphine Mn(I) Complex.
    Weber S; Stöger B; Kirchner K
    Org Lett; 2018 Nov; 20(22):7212-7215. PubMed ID: 30398883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective Hydrogenation of Nitriles to Primary Amines by using a Cobalt Phosphine Catalyst.
    Adam R; Bheeter CB; Cabrero-Antonino JR; Junge K; Jackstell R; Beller M
    ChemSusChem; 2017 Mar; 10(5):842-846. PubMed ID: 28066996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A State-of-the-Art Heterogeneous Catalyst for Efficient and General Nitrile Hydrogenation.
    Formenti D; Mocci R; Atia H; Dastgir S; Anwar M; Bachmann S; Scalone M; Junge K; Beller M
    Chemistry; 2020 Dec; 26(67):15589-15595. PubMed ID: 32337746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cobalt Phosphide-Embedded Reduced Graphene Oxide as a Bifunctional Catalyst for Overall Water Splitting.
    Zhao X; Fan Y; Wang H; Gao C; Liu Z; Li B; Peng Z; Yang JH; Liu B
    ACS Omega; 2020 Mar; 5(12):6516-6522. PubMed ID: 32258887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrogen-Doped Carbon-Supported Nickel Nanoparticles: A Robust Catalyst to Bridge the Hydrogenation of Nitriles and the Reductive Amination of Carbonyl Compounds for the Synthesis of Primary Amines.
    Zhang Y; Yang H; Chi Q; Zhang Z
    ChemSusChem; 2019 Mar; 12(6):1246-1255. PubMed ID: 30600939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective Hydrogenation of Nitriles to Primary Amines Catalyzed by a Cobalt Pincer Complex.
    Mukherjee A; Srimani D; Chakraborty S; Ben-David Y; Milstein D
    J Am Chem Soc; 2015 Jul; 137(28):8888-91. PubMed ID: 26131688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cobalt Complexes as an Emerging Class of Catalysts for Homogeneous Hydrogenations.
    Liu W; Sahoo B; Junge K; Beller M
    Acc Chem Res; 2018 Aug; 51(8):1858-1869. PubMed ID: 30091891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphine-Enhanced Semi-Hydrogenation of Phenylacetylene by Cobalt Phosphide Nano-Urchins.
    Ropp A; André RF; Carenco S
    Chempluschem; 2023 Nov; 88(11):e202300469. PubMed ID: 37694531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal-organic frameworks derived carbon-incorporated cobalt/dicobalt phosphide microspheres as Mott-Schottky electrocatalyst for efficient and stable hydrogen evolution reaction in wide-pH environment.
    Yu H; Li J; Gao G; Zhu G; Wang X; Lu T; Pan L
    J Colloid Interface Sci; 2020 Apr; 565():513-522. PubMed ID: 31982718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co
    Gao J; Wang J; Zhou L; Cai X; Zhan D; Hou M; Lai L
    ACS Appl Mater Interfaces; 2019 Mar; 11(10):10364-10372. PubMed ID: 30793878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogenation of nitriles to primary amines catalyzed by an unsupported nanoporous palladium catalyst: understanding the essential reason for the high activity and selectivity of the catalyst.
    Lu Y; Wang J; Feng X; Li Y; Zhang W; Yamamoto Y; Bao M
    Nanoscale; 2022 Jul; 14(26):9341-9348. PubMed ID: 35704927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Selective Hydrogenative Conversion of Nitriles into Tertiary, Secondary, and Primary Amines under Flow Reaction Conditions.
    Yamada T; Park K; Furugen C; Jiang J; Shimizu E; Ito N; Sajiki H
    ChemSusChem; 2022 Jan; 15(2):e202102138. PubMed ID: 34779573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron- and Cobalt-Catalyzed Alkene Hydrogenation: Catalysis with Both Redox-Active and Strong Field Ligands.
    Chirik PJ
    Acc Chem Res; 2015 Jun; 48(6):1687-95. PubMed ID: 26042837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expedited Synthesis of Metal Phosphides Maximizes Dispersion, Air Stability, and Catalytic Performance in Selective Hydrogenation.
    Karam L; Farès C; Weidenthaler C; Neumann CN
    Angew Chem Int Ed Engl; 2024 Jun; ():e202404292. PubMed ID: 38860426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High performance of a cobalt-nitrogen complex for the reduction and reductive coupling of nitro compounds into amines and their derivatives.
    Zhou P; Jiang L; Wang F; Deng K; Lv K; Zhang Z
    Sci Adv; 2017 Feb; 3(2):e1601945. PubMed ID: 28232954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.