These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 32953499)
1. 3D radiomics predicts EGFR mutation, exon-19 deletion and exon-21 L858R mutation in lung adenocarcinoma. Liu G; Xu Z; Ge Y; Jiang B; Groen H; Vliegenthart R; Xie X Transl Lung Cancer Res; 2020 Aug; 9(4):1212-1224. PubMed ID: 32953499 [TBL] [Abstract][Full Text] [Related]
2. Combination of Li S; Li Y; Zhao M; Wang P; Xin J Korean J Radiol; 2022 Sep; 23(9):921-930. PubMed ID: 36047542 [TBL] [Abstract][Full Text] [Related]
3. EGFR Mutation Status and Subtypes Predicted by CT-Based 3D Radiomic Features in Lung Adenocarcinoma. Chen Q; Li Y; Cheng Q; Van Valkenburgh J; Sun X; Zheng C; Zhang R; Yuan R Onco Targets Ther; 2022; 15():597-608. PubMed ID: 35669165 [TBL] [Abstract][Full Text] [Related]
4. Computed Tomography-Based Radiomics Signature: A Potential Indicator of Epidermal Growth Factor Receptor Mutation in Pulmonary Adenocarcinoma Appearing as a Subsolid Nodule. Yang X; Dong X; Wang J; Li W; Gu Z; Gao D; Zhong N; Guan Y Oncologist; 2019 Nov; 24(11):e1156-e1164. PubMed ID: 30936378 [TBL] [Abstract][Full Text] [Related]
5. Predicting EGFR mutation subtypes in lung adenocarcinoma using Liu Q; Sun D; Li N; Kim J; Feng D; Huang G; Wang L; Song S Transl Lung Cancer Res; 2020 Jun; 9(3):549-562. PubMed ID: 32676319 [TBL] [Abstract][Full Text] [Related]
6. Distinguishing EGFR mutation molecular subtypes based on MRI radiomics features of lung adenocarcinoma brain metastases. Xu J; Yang Y; Gao Z; Song T; Ma Y; Yu X; Shi C Clin Neurol Neurosurg; 2024 May; 240():108258. PubMed ID: 38552362 [TBL] [Abstract][Full Text] [Related]
7. Detailed identification of epidermal growth factor receptor mutations in lung adenocarcinoma: Combining radiomics with machine learning. Li S; Luo T; Ding C; Huang Q; Guan Z; Zhang H Med Phys; 2020 Aug; 47(8):3458-3466. PubMed ID: 32416013 [TBL] [Abstract][Full Text] [Related]
8. Development and validation of MRI-based radiomics signatures as new markers for preoperative assessment of EGFR mutation and subtypes from bone metastases. Fan Y; Dong Y; Sun X; Wang H; Zhao P; Wang H; Jiang X BMC Cancer; 2022 Aug; 22(1):889. PubMed ID: 35964032 [TBL] [Abstract][Full Text] [Related]
9. Associations between clinical data and computed tomography features in patients with epidermal growth factor receptor mutations in lung adenocarcinoma. Cao Y; Xu H; Liao M; Qu Y; Xu L; Zhu D; Wang B; Tian S Int J Clin Oncol; 2018 Apr; 23(2):249-257. PubMed ID: 28988295 [TBL] [Abstract][Full Text] [Related]
10. CT texture analysis of lung adenocarcinoma: can Radiomic features be surrogate biomarkers for EGFR mutation statuses. Mei D; Luo Y; Wang Y; Gong J Cancer Imaging; 2018 Dec; 18(1):52. PubMed ID: 30547844 [TBL] [Abstract][Full Text] [Related]
11. Lung adenocarcinoma: development of nomograms based on PET/CT images for prediction of epidermal growth factor receptor mutation status and subtypes. Huang L; Cao Y; Zhou F; Li J; Ren J; Zhang G; Luo Y; Liu J; He J; Zhou J Nucl Med Commun; 2022 Mar; 43(3):310-322. PubMed ID: 34954763 [TBL] [Abstract][Full Text] [Related]
12. CT Gray-Level Texture Analysis as a Quantitative Imaging Biomarker of Epidermal Growth Factor Receptor Mutation Status in Adenocarcinoma of the Lung. Ozkan E; West A; Dedelow JA; Chu BF; Zhao W; Yildiz VO; Otterson GA; Shilo K; Ghosh S; King M; White RD; Erdal BS AJR Am J Roentgenol; 2015 Nov; 205(5):1016-25. PubMed ID: 26496549 [TBL] [Abstract][Full Text] [Related]
13. Development of a Nomogram Based on 3D CT Radiomics Signature to Predict the Mutation Status of EGFR Molecular Subtypes in Lung Adenocarcinoma: A Multicenter Study. Zhang G; Deng L; Zhang J; Cao Y; Li S; Ren J; Qian R; Peng S; Zhang X; Zhou J; Zhang Z; Kong W; Pu H Front Oncol; 2022; 12():889293. PubMed ID: 35574401 [TBL] [Abstract][Full Text] [Related]
14. Radiomics for the prediction of EGFR mutation subtypes in non-small cell lung cancer. Li S; Ding C; Zhang H; Song J; Wu L Med Phys; 2019 Oct; 46(10):4545-4552. PubMed ID: 31376283 [TBL] [Abstract][Full Text] [Related]
15. Using combined CT-clinical radiomics models to identify epidermal growth factor receptor mutation subtypes in lung adenocarcinoma. Huo JW; Luo TY; Diao L; Lv FJ; Chen WD; Yu RZ; Li Q Front Oncol; 2022; 12():846589. PubMed ID: 36059655 [TBL] [Abstract][Full Text] [Related]
16. Computed tomography-based radiomics quantification predicts epidermal growth factor receptor mutation status and efficacy of first-line targeted therapy in lung adenocarcinoma. Jiang M; Yang P; Li J; Peng W; Pu X; Chen B; Li J; Wang J; Wu L Front Oncol; 2022; 12():985284. PubMed ID: 36052262 [TBL] [Abstract][Full Text] [Related]
17. L858R EGFR mutation status correlated with clinico-pathological features of Japanese lung cancer. Sasaki H; Endo K; Takada M; Kawahara M; Kitahara N; Tanaka H; Okumura M; Matsumura A; Iuchi K; Kawaguchi T; Yukiue H; Kobayashi Y; Yano M; Fujii Y Lung Cancer; 2006 Oct; 54(1):103-8. PubMed ID: 16890322 [TBL] [Abstract][Full Text] [Related]
18. Three-dimensional topological radiogenomics of epidermal growth factor receptor Del19 and L858R mutation subtypes on computed tomography images of lung cancer patients. Ninomiya K; Arimura H; Tanaka K; Chan WY; Kabata Y; Mizuno S; Gowdh NFM; Yaakup NA; Liam CK; Chai CS; Ng KH Comput Methods Programs Biomed; 2023 Jun; 236():107544. PubMed ID: 37148668 [TBL] [Abstract][Full Text] [Related]
19. Novel EGFR mutation-specific antibodies for lung adenocarcinoma: highly specific but not sensitive detection of an E746_A750 deletion in exon 19 and an L858R mutation in exon 21 by immunohistochemistry. Seo AN; Park TI; Jin Y; Sun PL; Kim H; Chang H; Chung JH Lung Cancer; 2014 Mar; 83(3):316-23. PubMed ID: 24412618 [TBL] [Abstract][Full Text] [Related]
20. [Application of radiomics captured from CT to predict the EGFR mutation status and TKIs therapeutic sensitivity of advanced lung adenocarcinoma]. Yang CS; Chen WD; Gong GZ; Li ZJ; Qiu QT; Yin Y Zhonghua Zhong Liu Za Zhi; 2019 Apr; 41(4):282-287. PubMed ID: 31014053 [No Abstract] [Full Text] [Related] [Next] [New Search]