These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 32953512)

  • 1. Predicting the invasiveness of lung adenocarcinomas appearing as ground-glass nodule on CT scan using multi-task learning and deep radiomics.
    Wang X; Li Q; Cai J; Wang W; Xu P; Zhang Y; Fang Q; Fu C; Fan L; Xiao Y; Liu S
    Transl Lung Cancer Res; 2020 Aug; 9(4):1397-1406. PubMed ID: 32953512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D deep learning based classification of pulmonary ground glass opacity nodules with automatic segmentation.
    Wang D; Zhang T; Li M; Bueno R; Jayender J
    Comput Med Imaging Graph; 2021 Mar; 88():101814. PubMed ID: 33486368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determining the invasiveness of ground-glass nodules using a 3D multi-task network.
    Yu Y; Wang N; Huang N; Liu X; Zheng Y; Fu Y; Li X; Wu H; Xu J; Cheng J
    Eur Radiol; 2021 Sep; 31(9):7162-7171. PubMed ID: 33665717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A triple-classification for the evaluation of lung nodules manifesting as pure ground-glass sign: a CT-based radiomic analysis.
    Yu Z; Xu C; Zhang Y; Ji F
    BMC Med Imaging; 2022 Jul; 22(1):133. PubMed ID: 35896975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lung-PNet: An Automated Deep Learning Model for the Diagnosis of Invasive Adenocarcinoma in Pure Ground-Glass Nodules on Chest CT.
    Qi K; Wang K; Wang X; Zhang YD; Lin G; Zhang X; Liu H; Huang W; Wu J; Zhao K; Liu J; Li J; Zhang X
    AJR Am J Roentgenol; 2024 Jan; 222(1):e2329674. PubMed ID: 37493322
    [No Abstract]   [Full Text] [Related]  

  • 6. Morphological factors differentiating between early lung adenocarcinomas appearing as pure ground-glass nodules measuring ≤10 mm on thin-section computed tomography.
    Xiang W; Xing Y; Jiang S; Chen G; Mao H; Labh K; Jia X; Sun X
    Cancer Imaging; 2014 Nov; 14(1):33. PubMed ID: 25608623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison and Fusion of Deep Learning and Radiomics Features of Ground-Glass Nodules to Predict the Invasiveness Risk of Stage-I Lung Adenocarcinomas in CT Scan.
    Xia X; Gong J; Hao W; Yang T; Lin Y; Wang S; Peng W
    Front Oncol; 2020; 10():418. PubMed ID: 32296645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feature-shared adaptive-boost deep learning for invasiveness classification of pulmonary subsolid nodules in CT images.
    Wang J; Chen X; Lu H; Zhang L; Pan J; Bao Y; Su J; Qian D
    Med Phys; 2020 Apr; 47(4):1738-1749. PubMed ID: 32020649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of pathological subtypes of early lung adenocarcinoma based on artificial intelligence parameters and CT signs.
    Fang W; Zhang G; Yu Y; Chen H; Liu H
    Biosci Rep; 2022 Jan; 42(1):. PubMed ID: 35005775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiomics signature on CECT as a predictive factor for invasiveness of lung adenocarcinoma manifesting as subcentimeter ground glass nodules.
    Chen W; Li M; Mao D; Ge X; Wang J; Tan M; Ma W; Huang X; Lu J; Li C; Hua Y; Wu H
    Sci Rep; 2021 Feb; 11(1):3633. PubMed ID: 33574448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lung Adenocarcinoma Manifesting as Ground-Glass Opacity Nodules 3 cm or Smaller: Evaluation With Combined High-Resolution CT and PET/CT Modality.
    Niu R; Shao X; Shao X; Wang J; Jiang Z; Wang Y
    AJR Am J Roentgenol; 2019 Nov; 213(5):W236-W245. PubMed ID: 31361533
    [No Abstract]   [Full Text] [Related]  

  • 12. Spectral Dual-Layer Computed Tomography Can Predict the Invasiveness of Ground-Glass Nodules: A Diagnostic Model Combined with Thymidine Kinase-1.
    Wang T; Yue Y; Fan Z; Jia Z; Yu X; Liu C; Hou Y
    J Clin Med; 2023 Jan; 12(3):. PubMed ID: 36769756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discriminating invasive adenocarcinoma among lung pure ground-glass nodules: a multi-parameter prediction model.
    Hu F; Huang H; Jiang Y; Feng M; Wang H; Tang M; Zhou Y; Tan X; Liu Y; Xu C; Ding N; Bai C; Hu J; Yang D; Zhang Y
    J Thorac Dis; 2021 Sep; 13(9):5383-5394. PubMed ID: 34659805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CT-based radiomics for differentiating invasive adenocarcinomas from indolent lung adenocarcinomas appearing as ground-glass nodules: Asystematic review.
    Shi L; Zhao J; Peng X; Wang Y; Liu L; Sheng M
    Eur J Radiol; 2021 Nov; 144():109956. PubMed ID: 34563797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiomic signature based on CT imaging to distinguish invasive adenocarcinoma from minimally invasive adenocarcinoma in pure ground-glass nodules with pleural contact.
    Jiang Y; Che S; Ma S; Liu X; Guo Y; Liu A; Li G; Li Z
    Cancer Imaging; 2021 Jan; 21(1):1. PubMed ID: 33407884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HRCT features distinguishing pre-invasive from invasive pulmonary adenocarcinomas appearing as ground-glass nodules.
    Zhang Y; Shen Y; Qiang JW; Ye JD; Zhang J; Zhao RY
    Eur Radiol; 2016 Sep; 26(9):2921-8. PubMed ID: 26662263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-classification model incorporating radiomics and clinic-radiological features for predicting invasiveness and differentiation of pulmonary adenocarcinoma nodules.
    Sun H; Zhang C; Ouyang A; Dai Z; Song P; Yao J
    Biomed Eng Online; 2023 Nov; 22(1):112. PubMed ID: 38037082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Marginal radiomics features as imaging biomarkers for pathological invasion in lung adenocarcinoma.
    Cho HH; Lee G; Lee HY; Park H
    Eur Radiol; 2020 May; 30(5):2984-2994. PubMed ID: 31965255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CT-based radiomics combined with clinical features for invasiveness prediction and pathological subtypes classification of subsolid pulmonary nodules.
    Liu M; Duan R; Xu Z; Fu Z; Li Z; Pan A; Lin Y
    Eur J Radiol Open; 2024 Dec; 13():100584. PubMed ID: 39041055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CT features and quantitative analysis of subsolid nodule lung adenocarcinoma for pathological classification prediction.
    Li X; Zhang W; Yu Y; Zhang G; Zhou L; Wu Z; Liu B
    BMC Cancer; 2020 Jan; 20(1):60. PubMed ID: 31992239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.