These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 3295404)

  • 1. Extracorporeal circulation material evaluation: microemboli.
    Pearson DT; Poslad SJ; Murray A; Clayton R
    Life Support Syst; 1987; 5(1):53-67. PubMed ID: 3295404
    [No Abstract]   [Full Text] [Related]  

  • 2. Impact of oxygenator characteristics on its capability to remove gaseous microemboli.
    De Somer F
    J Extra Corpor Technol; 2007 Dec; 39(4):271-3. PubMed ID: 18293817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biophysical aspects of gas bubbles in blood.
    Butler BD
    Med Instrum; 1985; 19(2):59-62. PubMed ID: 3889566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gaseous microemboli production of bubble and membrane oxygenators.
    Pearson DT; Holden MP; Poslad SJ
    Life Support Syst; 1986; 4 Suppl 1():198-208. PubMed ID: 3747601
    [No Abstract]   [Full Text] [Related]  

  • 5. Detection of microemboli during cardiopulmonary bypass.
    Lichti EL; Simmons EM; Almond CA
    Surg Gynecol Obstet; 1972 Jun; 134(6):977-80. PubMed ID: 5032394
    [No Abstract]   [Full Text] [Related]  

  • 6. Gaseous microemboli: sources, causes, and clinical considerations.
    Kurusz M
    Med Instrum; 1985; 19(2):73-6. PubMed ID: 4000011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of microemboli in extracorporeal circulation systems.
    Clark RE; Dietz DR; Miller JG
    Surg Forum; 1974; 25(0):139-41. PubMed ID: 4439144
    [No Abstract]   [Full Text] [Related]  

  • 8. The capability of trapping gaseous microemboli of two pediatric arterial filters with pulsatile and nonpulsatile flow in a simulated infant CPB model.
    Wang S; Win KN; Kunselman AR; Woitas K; Myers JL; Undar A
    ASAIO J; 2008; 54(5):519-22. PubMed ID: 18812745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection and classification of gaseous microemboli during pulsatile and nonpulsatile perfusion in a simulated neonatal CPB model.
    Undar A; Ji B; Kunselman AR; Myers JL
    ASAIO J; 2007; 53(6):725-9. PubMed ID: 18043156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microemboli generation, detection and characterization during CPB procedures in neonates, infants, and small children.
    Win KN; Wang S; Undar A
    ASAIO J; 2008; 54(5):486-90. PubMed ID: 18812739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced amount of gaseous microemboli in the arterial line of minimized extracorporeal circulation systems compared with conventional extracorporeal circulation.
    Bauer A; Schaarschmidt J; Anastasiadis K; Carrel T
    Eur J Cardiothorac Surg; 2014 Jul; 46(1):152. PubMed ID: 24047711
    [No Abstract]   [Full Text] [Related]  

  • 12. Use of membrane oxygenators without systemic heparinization for long-term partial bypass in dogs.
    Hagler HK; Eberle JW; Watson JT; Platt MR; Sugg WL
    Surg Forum; 1974; 25(0):130-1. PubMed ID: 4439140
    [No Abstract]   [Full Text] [Related]  

  • 13. Case 2--2007: Systemic air embolization after termination of cardiopulmonary bypass.
    Neema PK; Pathak S; Varma PK; Manikandan S; Rathod RC; Tempe DK; Tung A
    J Cardiothorac Vasc Anesth; 2007 Apr; 21(2):288-97. PubMed ID: 17418752
    [No Abstract]   [Full Text] [Related]  

  • 14. Clinical comparison of two devices for detection of microemboli during cardiopulmonary bypass.
    Clayton RH; Pearson DT; Murray A
    Clin Phys Physiol Meas; 1990 Nov; 11(4):327-32. PubMed ID: 2279375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasonic identification of sources of gaseous microemboli during open heart surgery.
    Gallagher EG; Pearson DT
    Thorax; 1973 May; 28(3):295-305. PubMed ID: 4724497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gaseous microemboli detection in a simulated pediatric CPB circuit using a novel ultrasound system.
    Miller A; Wang S; Myers JL; Undar A
    ASAIO J; 2008; 54(5):504-8. PubMed ID: 18812742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The bubble oxygenator as a source of gaseous microemboli.
    Yost G
    Med Instrum; 1985; 19(2):67-9. PubMed ID: 4000009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. We are forever pumping air: the human body has the amazing ability to absorb gaseous microemboli during cardiopulmonary bypass.
    Riley JB
    J Extra Corpor Technol; 2011 Sep; 43(3):170-1. PubMed ID: 22164459
    [No Abstract]   [Full Text] [Related]  

  • 19. A clinical evaluation of the gas transfer characteristics and gaseous microemboli production of two bubble oxygenators.
    Pearson DT; Holden MP; Poslad SJ; Murray A; Waterhouse PS
    Life Support Syst; 1984; 2(4):252-66. PubMed ID: 6441873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Air embolism during cardiopulmonary bypass.
    Kurusz M; Butler B; Katz J; Conti VR
    Perfusion; 1995 Nov; 10(6):361-91. PubMed ID: 8747895
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.