BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 32954409)

  • 21. Dissociable effects of subtotal lesions within the macaque orbital prefrontal cortex on reward-guided behavior.
    Rudebeck PH; Murray EA
    J Neurosci; 2011 Jul; 31(29):10569-78. PubMed ID: 21775601
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The motivational role of the ventral striatum and amygdala in learning from gains and losses.
    Taswell CA; Janssen M; Murray EA; Averbeck BB
    Behav Neurosci; 2023 Aug; 137(4):268-280. PubMed ID: 37141014
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of reward size and context on learning in macaque monkeys.
    Ferrucci L; Nougaret S; Brunamonti E; Genovesio A
    Behav Brain Res; 2019 Oct; 372():111983. PubMed ID: 31141723
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential effects of amygdala, orbital prefrontal cortex, and prelimbic cortex lesions on goal-directed behavior in rhesus macaques.
    Rhodes SE; Murray EA
    J Neurosci; 2013 Feb; 33(8):3380-9. PubMed ID: 23426666
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Contrasting Roles for Orbitofrontal Cortex and Amygdala in Credit Assignment and Learning in Macaques.
    Chau BK; Sallet J; Papageorgiou GK; Noonan MP; Bell AH; Walton ME; Rushworth MF
    Neuron; 2015 Sep; 87(5):1106-18. PubMed ID: 26335649
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reversal learning and dopamine: a bayesian perspective.
    Costa VD; Tran VL; Turchi J; Averbeck BB
    J Neurosci; 2015 Feb; 35(6):2407-16. PubMed ID: 25673835
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selective aspiration or neurotoxic lesions of orbital frontal areas 11 and 13 spared monkeys' performance on the object discrimination reversal task.
    Kazama A; Bachevalier J
    J Neurosci; 2009 Mar; 29(9):2794-804. PubMed ID: 19261875
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distinct contributions of the amygdala and hippocampus to fear expression.
    Chudasama Y; Izquierdo A; Murray EA
    Eur J Neurosci; 2009 Dec; 30(12):2327-37. PubMed ID: 20092575
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Excitotoxic lesions of the amygdala fail to produce impairment in visual learning for auditory secondary reinforcement but interfere with reinforcer devaluation effects in rhesus monkeys.
    Málková L; Gaffan D; Murray EA
    J Neurosci; 1997 Aug; 17(15):6011-20. PubMed ID: 9221797
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Amygdala activity for the modulation of goal-directed behavior in emotional contexts.
    Maeda K; Kunimatsu J; Hikosaka O
    PLoS Biol; 2018 Jun; 16(6):e2005339. PubMed ID: 29870524
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Orbitofrontal Circuits Control Multiple Reinforcement-Learning Processes.
    Groman SM; Keistler C; Keip AJ; Hammarlund E; DiLeone RJ; Pittenger C; Lee D; Taylor JR
    Neuron; 2019 Aug; 103(4):734-746.e3. PubMed ID: 31253468
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anterior rhinal cortex and amygdala: dissociation of their contributions to memory and food preference in rhesus monkeys.
    Murray EA; Gaffan EA; Flint RW
    Behav Neurosci; 1996 Feb; 110(1):30-42. PubMed ID: 8652070
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A view-based decision mechanism for rewards in the primate amygdala.
    Grabenhorst F; Ponce-Alvarez A; Battaglia-Mayer A; Deco G; Schultz W
    Neuron; 2023 Dec; 111(23):3871-3884.e14. PubMed ID: 37725980
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Basolateral amygdala lesions abolish orbitofrontal-dependent reversal impairments.
    Stalnaker TA; Franz TM; Singh T; Schoenbaum G
    Neuron; 2007 Apr; 54(1):51-8. PubMed ID: 17408577
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prefrontal Cortex Predicts State Switches during Reversal Learning.
    Bartolo R; Averbeck BB
    Neuron; 2020 Jun; 106(6):1044-1054.e4. PubMed ID: 32315603
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ventral striatum lesions do not affect reinforcement learning with deterministic outcomes on slow time scales.
    Vicario-Feliciano R; Murray EA; Averbeck BB
    Behav Neurosci; 2017 Oct; 131(5):385-91. PubMed ID: 28805428
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interaction of inferior temporal cortex with frontal cortex and basal forebrain: double dissociation in strategy implementation and associative learning.
    Gaffan D; Easton A; Parker A
    J Neurosci; 2002 Aug; 22(16):7288-96. PubMed ID: 12177224
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lesions of the basolateral amygdala and orbitofrontal cortex differentially affect acquisition and performance of a rodent gambling task.
    Zeeb FD; Winstanley CA
    J Neurosci; 2011 Feb; 31(6):2197-204. PubMed ID: 21307256
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Disconnection of the amygdala from visual association cortex impairs visual reward-association learning in monkeys.
    Gaffan EA; Gaffan D; Harrison S
    J Neurosci; 1988 Sep; 8(9):3144-50. PubMed ID: 3171671
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Separable learning systems in the macaque brain and the role of orbitofrontal cortex in contingent learning.
    Walton ME; Behrens TE; Buckley MJ; Rudebeck PH; Rushworth MF
    Neuron; 2010 Mar; 65(6):927-39. PubMed ID: 20346766
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.