These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 32954482)

  • 41. Overexpression, purification and preliminary X-ray analysis of pullulanase from Bacillus subtilis strain 168.
    Malle D; Itoh T; Hashimoto W; Murata K; Utsumi S; Mikami B
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2006 Apr; 62(Pt 4):381-4. PubMed ID: 16582490
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Use of co-immobilized beta-amylase and pullulanase in reduction of saccharification time of starch and increase in maltose yield.
    Atia KS; Ismail SA; El-Arnaouty MB; Dessouki AM
    Biotechnol Prog; 2003; 19(3):853-7. PubMed ID: 12790649
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Soluble expression of pullulanase from Bacillus acidopullulyticus in Escherichia coli by tightly controlling basal expression.
    Chen A; Li Y; Liu X; Long Q; Yang Y; Bai Z
    J Ind Microbiol Biotechnol; 2014 Dec; 41(12):1803-10. PubMed ID: 25312401
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Pullulanase synthesis in klebsiella (aerobacter) aerogenes strains growing in continuous culture.
    Hope GC; Dean AC
    Biochem J; 1974 Nov; 144(2):403-11. PubMed ID: 4376962
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Influence of promoter and signal peptide on the expression of pullulanase in Bacillus subtilis.
    Wang Y; Liu Y; Wang Z; Lu F
    Biotechnol Lett; 2014 Sep; 36(9):1783-9. PubMed ID: 24793495
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Improvement of the Activity and Stability of Starch-Debranching Pullulanase from Bacillus naganoensis via Tailoring of the Active Sites Lining the Catalytic Pocket.
    Wang X; Nie Y; Xu Y
    J Agric Food Chem; 2018 Dec; 66(50):13236-13242. PubMed ID: 30499289
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cloning of the aapT gene and characterization of its product, alpha-amylase-pullulanase (AapT), from thermophilic and alkaliphilic Bacillus sp. strain XAL601.
    Lee SP; Morikawa M; Takagi M; Imanaka T
    Appl Environ Microbiol; 1994 Oct; 60(10):3764-73. PubMed ID: 7986049
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Introducing substrate limitations to overcome catabolite repression in a protease producing Bacillus licheniformis strain using membrane-based fed-batch shake flasks.
    Habicher T; John A; Scholl N; Daub A; Klein T; Philip P; Büchs J
    Biotechnol Bioeng; 2019 Jun; 116(6):1326-1340. PubMed ID: 30712275
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High level extracellular production of recombinant γ-glutamyl transpeptidase from Bacillus licheniformis in Escherichia coli fed-batch culture.
    Bindal S; Dagar VK; Saini M; Khasa YP; Gupta R
    Enzyme Microb Technol; 2018 Sep; 116():23-32. PubMed ID: 29887013
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Growth kinetics of Saccharomyces cerevisiae in batch and fed-batch cultivation using sugarcane molasses and glucose syrup from cassava starch.
    Win SS; Impoolsup A; Noomhorm A
    J Ind Microbiol; 1996 Feb; 16(2):117-23. PubMed ID: 8730575
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biotechnology and bioengineering of pullulanase: state of the art and perspectives.
    Xu P; Zhang SY; Luo ZG; Zong MH; Li XX; Lou WY
    World J Microbiol Biotechnol; 2021 Feb; 37(3):43. PubMed ID: 33547538
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhanced extracellular production of L-asparaginase from Bacillus subtilis 168 by B. subtilis WB600 through a combined strategy.
    Feng Y; Liu S; Jiao Y; Gao H; Wang M; Du G; Chen J
    Appl Microbiol Biotechnol; 2017 Feb; 101(4):1509-1520. PubMed ID: 27796436
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Regulate the hydrophobic motif to enhance the non-classical secretory expression of Pullulanase PulA in Bacillus subtilis.
    Zhen J; Zheng H; Zhao X; Fu X; Yang S; Xu J; Song H; Ma Y
    Int J Biol Macromol; 2021 Dec; 193(Pt A):238-246. PubMed ID: 34710472
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Medium optimization for the production of amylase by Bacillus subtilis RM16 in Shake-flask fermentation.
    Salman T; Kamal M; Ahmed M; Siddiqa SM; Khan RA; Hassan A
    Pak J Pharm Sci; 2016 Mar; 29(2):439-44. PubMed ID: 27087072
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Studies on the production of alkaline α-amylase from Bacillus subtilis CB-18.
    Nwokoro O; Anthonia O
    Acta Sci Pol Technol Aliment; 2015; 14(1):71-75. PubMed ID: 28068022
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enhancement of thermoalkaliphilic xylanase production by Pichia pastoris through novel fed-batch strategy in high cell-density fermentation.
    Shang T; Si D; Zhang D; Liu X; Zhao L; Hu C; Fu Y; Zhang R
    BMC Biotechnol; 2017 Jun; 17(1):55. PubMed ID: 28633643
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Studies on cellulase production by a Bacillus subtilis.
    Chan KY; Au KS
    Antonie Van Leeuwenhoek; 1987; 53(2):125-36. PubMed ID: 3116921
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Gene cloning and enzymatic characterization of alkali-tolerant type I pullulanase from Exiguobacterium acetylicum.
    Qiao Y; Peng Q; Yan J; Wang H; Ding H; Shi B
    Lett Appl Microbiol; 2015 Jan; 60(1):52-9. PubMed ID: 25273816
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pullulanase: role in starch hydrolysis and potential industrial applications.
    Hii SL; Tan JS; Ling TC; Ariff AB
    Enzyme Res; 2012; 2012():921362. PubMed ID: 22991654
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Production of nattokinase by high cell density fed-batch culture of Bacillus subtilis.
    Kwon EY; Kim KM; Kim MK; Lee IY; Kim BS
    Bioprocess Biosyst Eng; 2011 Sep; 34(7):789-93. PubMed ID: 21336955
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.