These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 32954551)

  • 21. Self-Powered Flexible Electrochromic Smart Window.
    Wang JL; Sheng SZ; He Z; Wang R; Pan Z; Zhao HY; Liu JW; Yu SH
    Nano Lett; 2021 Dec; 21(23):9976-9982. PubMed ID: 34813332
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Redox Potential Based Self-Powered Electrochromic Devices for Smart Windows.
    Ganesha MK; Hakkeem H; Singh AK
    Small; 2024 Jun; ():e2403156. PubMed ID: 38874058
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A layer-stacked NiO nanowire/nanosheet homostructure for electrochromic smart windows with ultra-large optical modulation.
    Gao Y; Lei P; Zhang S; Liu H; Hu C; Kou Z; Wang J; Cai G
    Nanoscale; 2023 May; 15(19):8685-8692. PubMed ID: 37128954
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel Prussian White@MnO
    Ding Y; Wang M; Mei Z; Diao X
    ACS Appl Mater Interfaces; 2022 Nov; 14(43):48833-48843. PubMed ID: 36269142
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Large Area Co-Assembly of Nanowires for Flexible Transparent Smart Windows.
    Wang JL; Lu YR; Li HH; Liu JW; Yu SH
    J Am Chem Soc; 2017 Jul; 139(29):9921-9926. PubMed ID: 28665606
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Potential Gradient-Driven Dual-Functional Electrochromic and Electrochemical Device Based on a Shared Electrode Design.
    Xu G; Zhang W; Zhu G; Xia H; Zhang H; Xie Q; Jin P; Zhang H; Yi C; Zhang R; Ji L; Shui T; Moloto N; She W; Sun Z
    Adv Sci (Weinh); 2024 Jul; 11(28):e2401948. PubMed ID: 38769650
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrochromic Asymmetric Supercapacitor Windows Enable Direct Determination of Energy Status by the Naked Eye.
    Zhong Y; Chai Z; Liang Z; Sun P; Xie W; Zhao C; Mai W
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):34085-34092. PubMed ID: 28884570
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automatic light-adjusting electrochromic device powered by perovskite solar cell.
    Ling H; Wu J; Su F; Tian Y; Liu YJ
    Nat Commun; 2021 Feb; 12(1):1010. PubMed ID: 33579925
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Toward Plastic Smart Windows: Optimization of Indium Tin Oxide Electrodes for the Synthesis of Electrochromic Devices on Polycarbonate Substrates.
    Laurenti M; Bianco S; Castellino M; Garino N; Virga A; Pirri CF; Mandracci P
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8032-42. PubMed ID: 26977891
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Toward Easy-to-Assemble, Large-Area Smart Windows: All-in-One Cross-Linked Electrochromic Material and Device.
    Zheng R; Wang Y; Pan J; Malik HA; Zhang H; Jia C; Weng X; Xie J; Deng L
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27526-27536. PubMed ID: 32423198
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flexible electrochromic films based on CVD-graphene electrodes.
    Soo Choi D; Ho Han S; Kim H; Hee Kang S; Kim Y; Yang CM; Kim TY; Ho Yoon D; Seok Yang W
    Nanotechnology; 2014 Oct; 25(39):395702. PubMed ID: 25201016
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Solar Water-Heating Smart Window by Integration of the Water Flow System and the Electrochromic Window Based on Reversible Metal Electrodeposition.
    Wang L; Jiao X; Chen D; Wang T
    Adv Sci (Weinh); 2022 Feb; 9(6):e2104121. PubMed ID: 34962109
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Methodology for measuring current distribution effects in electrochromic smart windows.
    Engfeldt JD; Georen P; Lagergren C; Lindbergh G
    Appl Opt; 2011 Oct; 50(29):5639-46. PubMed ID: 22015357
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dual-Band Electrochromic Devices with a Transparent Conductive Capacitive Charge-Balancing Anode.
    Zhang S; Li Y; Zhang T; Cao S; Yao Q; Lin H; Ye H; Fisher A; Lee JY
    ACS Appl Mater Interfaces; 2019 Dec; 11(51):48062-48070. PubMed ID: 31790202
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wide-Spectrum Modulated Electrochromic Smart Windows Based on MnO
    Ma D; Lee-Sie Eh A; Cao S; Lee PS; Wang J
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1443-1451. PubMed ID: 34957823
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Low-Spin Fe Redox-Based Prussian Blue with excellent selective dual-band electrochromic modulation and energy-saving applications.
    Tang D; Wang J; Liu XA; Tong Z; Ji H; Qu HY
    J Colloid Interface Sci; 2023 Apr; 636():351-362. PubMed ID: 36638574
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A multi-chromic supercapacitor of high coloration efficiency integrating a MOF-derived V
    Dewan A; Narayanan R; Thotiyl MO
    Nanoscale; 2022 Dec; 14(46):17372-17384. PubMed ID: 36382617
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Low-Temperature Deposition of Transparent Conducting Films Applied to Flexible Electrochromic Devices.
    Li KD; Chen PW; Chang KS
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34501052
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly flexible electrochromic devices enabled by electroplated nickel grid electrodes and multifunctional hydrogels.
    Zhao SQ; Liu YH; Ming Z; Chen C; Xu WW; Chen L; Huang W
    Opt Express; 2019 Oct; 27(21):29547-29557. PubMed ID: 31684214
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A leaf vein-like hierarchical silver grids transparent electrode towards high-performance flexible electrochromic smart windows.
    Li T; Li S; Li X; Xu Z; Zhao J; Shi Y; Wang Y; Yu R; Liu X; Xu Q; Guo W
    Sci Bull (Beijing); 2020 Feb; 65(3):225-232. PubMed ID: 36659176
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.