These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 32954640)
1. TWAS pathway method greatly enhances the number of leads for uncovering the molecular underpinnings of psychiatric disorders. Chatzinakos C; Georgiadis F; Lee D; Cai N; Vladimirov VI; Docherty A; Webb BT; Riley BP; Flint J; Kendler KS; Daskalakis NP; Bacanu SA Am J Med Genet B Neuropsychiatr Genet; 2020 Dec; 183(8):454-463. PubMed ID: 32954640 [TBL] [Abstract][Full Text] [Related]
2. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures? Veturi Y; Ritchie MD Pac Symp Biocomput; 2018; 23():228-239. PubMed ID: 29218884 [TBL] [Abstract][Full Text] [Related]
3. Influence of tissue context on gene prioritization for predicted transcriptome-wide association studies. Li B; Veturi Y; Bradford Y; Verma SS; Verma A; Lucas AM; Haas DW; Ritchie MD Pac Symp Biocomput; 2019; 24():296-307. PubMed ID: 30864331 [TBL] [Abstract][Full Text] [Related]
4. Bayesian genome-wide TWAS with reference transcriptomic data of brain and blood tissues identified 141 risk genes for Alzheimer's disease dementia. Guo S; Yang J Alzheimers Res Ther; 2024 Jun; 16(1):120. PubMed ID: 38824563 [TBL] [Abstract][Full Text] [Related]
5. Integrating eQTL data with GWAS summary statistics in pathway-based analysis with application to schizophrenia. Wu C; Pan W Genet Epidemiol; 2018 Apr; 42(3):303-316. PubMed ID: 29411426 [TBL] [Abstract][Full Text] [Related]
6. Statistical power of transcriptome-wide association studies. He R; Xue H; Pan W; Genet Epidemiol; 2022 Dec; 46(8):572-588. PubMed ID: 35766062 [TBL] [Abstract][Full Text] [Related]
7. Leveraging expression from multiple tissues using sparse canonical correlation analysis and aggregate tests improves the power of transcriptome-wide association studies. Feng H; Mancuso N; Gusev A; Majumdar A; Major M; Pasaniuc B; Kraft P PLoS Genet; 2021 Apr; 17(4):e1008973. PubMed ID: 33831007 [TBL] [Abstract][Full Text] [Related]
8. MATS: a novel multi-ancestry transcriptome-wide association study to account for heterogeneity in the effects of cis-regulated gene expression on complex traits. Knutson KA; Pan W Hum Mol Genet; 2023 Apr; 32(8):1237-1251. PubMed ID: 36179104 [TBL] [Abstract][Full Text] [Related]
9. TWAS facilitates gene-scale trait genetic dissection through gene expression, structural variations, and alternative splicing in soybean. Li D; Wang Q; Tian Y; Lyv X; Zhang H; Hong H; Gao H; Li YF; Zhao C; Wang J; Wang R; Yang J; Liu B; Schnable PS; Schnable JC; Li YH; Qiu LJ Plant Commun; 2024 Oct; 5(10):101010. PubMed ID: 38918950 [TBL] [Abstract][Full Text] [Related]
10. Leveraging gene co-regulation to identify gene sets enriched for disease heritability. Siewert-Rocks KM; Kim SS; Yao DW; Shi H; Price AL Am J Hum Genet; 2022 Mar; 109(3):393-404. PubMed ID: 35108496 [TBL] [Abstract][Full Text] [Related]
11. Multitrait transcriptome-wide association study (TWAS) tests. Feng H; Mancuso N; Pasaniuc B; Kraft P Genet Epidemiol; 2021 Sep; 45(6):563-576. PubMed ID: 34082479 [TBL] [Abstract][Full Text] [Related]
12. JEPEG: a summary statistics based tool for gene-level joint testing of functional variants. Lee D; Williamson VS; Bigdeli TB; Riley BP; Fanous AH; Vladimirov VI; Bacanu SA Bioinformatics; 2015 Apr; 31(8):1176-82. PubMed ID: 25505091 [TBL] [Abstract][Full Text] [Related]
13. Integrating DNA sequencing and transcriptomic data for association analyses of low-frequency variants and lipid traits. Yang T; Wu C; Wei P; Pan W Hum Mol Genet; 2020 Feb; 29(3):515-526. PubMed ID: 31919517 [TBL] [Abstract][Full Text] [Related]
14. Accounting for nonlinear effects of gene expression identifies additional associated genes in transcriptome-wide association studies. Lin Z; Xue H; Malakhov MM; Knutson KA; Pan W Hum Mol Genet; 2022 Jul; 31(14):2462-2470. PubMed ID: 35043938 [TBL] [Abstract][Full Text] [Related]
15. TIGAR: An Improved Bayesian Tool for Transcriptomic Data Imputation Enhances Gene Mapping of Complex Traits. Nagpal S; Meng X; Epstein MP; Tsoi LC; Patrick M; Gibson G; De Jager PL; Bennett DA; Wingo AP; Wingo TS; Yang J Am J Hum Genet; 2019 Aug; 105(2):258-266. PubMed ID: 31230719 [TBL] [Abstract][Full Text] [Related]
16. Integrative analysis of transcriptome-wide association study and mRNA expression profile identified risk genes for bipolar disorder. Yang R; Wang R; Zhao D; Lian K; Shang B; Dong L; Yang X; Dang X; Sun D; Cheng Y Neurosci Lett; 2024 Sep; 839():137935. PubMed ID: 39151574 [TBL] [Abstract][Full Text] [Related]
17. Aggregating multiple expression prediction models improves the power of transcriptome-wide association studies. Zeng P; Dai J; Jin S; Zhou X Hum Mol Genet; 2021 May; 30(10):939-951. PubMed ID: 33615361 [TBL] [Abstract][Full Text] [Related]
18. Meta-Analysis of Transcriptome-Wide Association Studies across 13 Brain Tissues Identified Novel Clusters of Genes Associated with Nicotine Addiction. Ye Z; Mo C; Ke H; Yan Q; Chen C; Kochunov P; Hong LE; Mitchell BD; Chen S; Ma T Genes (Basel); 2021 Dec; 13(1):. PubMed ID: 35052378 [TBL] [Abstract][Full Text] [Related]
19. Disentangling the genetics of sarcopenia: prioritization of NUDT3 and KLF5 as genes for lean mass & HLA-DQB1-AS1 for hand grip strength with the associated enhancing SNPs & a scoring system. Singh AN; Gasman B BMC Med Genet; 2020 Feb; 21(1):40. PubMed ID: 32093658 [TBL] [Abstract][Full Text] [Related]
20. Transcriptome-wide association analysis of brain structures yields insights into pleiotropy with complex neuropsychiatric traits. Zhao B; Shan Y; Yang Y; Yu Z; Li T; Wang X; Luo T; Zhu Z; Sullivan P; Zhao H; Li Y; Zhu H Nat Commun; 2021 May; 12(1):2878. PubMed ID: 34001886 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]