These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 32954676)

  • 1. Improved production of 2,3-butanediol and isobutanol by engineering electron transport chain in Escherichia coli.
    Jung HM; Han JH; Oh MK
    Microb Biotechnol; 2021 Jan; 14(1):213-226. PubMed ID: 32954676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of Metabolic Engineering Strategies on 2-Ketoisovalerate Production by Escherichia coli.
    Zhou L; Zhu Y; Yuan Z; Liu G; Sun Z; Du S; Liu H; Li Y; Liu H; Zhou Z
    Appl Environ Microbiol; 2022 Sep; 88(17):e0097622. PubMed ID: 35980178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elucidating and reprogramming Escherichia coli metabolisms for obligate anaerobic n-butanol and isobutanol production.
    Trinh CT
    Appl Microbiol Biotechnol; 2012 Aug; 95(4):1083-94. PubMed ID: 22678028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering cofactor flexibility enhanced 2,3-butanediol production in Escherichia coli.
    Liang K; Shen CR
    J Ind Microbiol Biotechnol; 2017 Dec; 44(12):1605-1612. PubMed ID: 29116429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD(+)-dependent formate dehydrogenase.
    Berríos-Rivera SJ; Bennett GN; San KY
    Metab Eng; 2002 Jul; 4(3):217-29. PubMed ID: 12616691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activating transhydrogenase and NAD kinase in combination for improving isobutanol production.
    Shi A; Zhu X; Lu J; Zhang X; Ma Y
    Metab Eng; 2013 Mar; 16():1-10. PubMed ID: 23246519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of increasing NADH availability on the redistribution of metabolic fluxes in Escherichia coli chemostat cultures.
    Berríos-Rivera SJ; Bennett GN; San KY
    Metab Eng; 2002 Jul; 4(3):230-7. PubMed ID: 12616692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of alternative metabolic pathways diverts carbon flux away from isobutanol formation in an engineered Escherichia coli strain.
    Deb SS; Reshamwala SMS; Lali AM
    Biotechnol Lett; 2019 Jul; 41(6-7):823-836. PubMed ID: 31093837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High yields of 2,3-butanediol and mannitol in Lactococcus lactis through engineering of NAD⁺ cofactor recycling.
    Gaspar P; Neves AR; Gasson MJ; Shearman CA; Santos H
    Appl Environ Microbiol; 2011 Oct; 77(19):6826-35. PubMed ID: 21841021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineered E. coli W enables efficient 2,3-butanediol production from glucose and sugar beet molasses using defined minimal medium as economic basis.
    Erian AM; Gibisch M; Pflügl S
    Microb Cell Fact; 2018 Nov; 17(1):190. PubMed ID: 30501633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NADH plays the vital role for chiral pure D-(-)-2,3-butanediol production in Bacillus subtilis under limited oxygen conditions.
    Fu J; Wang Z; Chen T; Liu W; Shi T; Wang G; Tang YJ; Zhao X
    Biotechnol Bioeng; 2014 Oct; 111(10):2126-31. PubMed ID: 24788512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model-driven redox pathway manipulation for improved isobutanol production in Bacillus subtilis complemented with experimental validation and metabolic profiling analysis.
    Qi H; Li S; Zhao S; Huang D; Xia M; Wen J
    PLoS One; 2014; 9(4):e93815. PubMed ID: 24705866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering a synthetic anaerobic respiration for reduction of xylose to xylitol using NADH output of glucose catabolism by Escherichia coli AI21.
    Iverson A; Garza E; Manow R; Wang J; Gao Y; Grayburn S; Zhou S
    BMC Syst Biol; 2016 Apr; 10():31. PubMed ID: 27083875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of Escherichia coli for the production of isobutanol: a review.
    Gu P; Liu L; Ma Q; Dong Z; Wang Q; Xu J; Huang Z; Li Q
    World J Microbiol Biotechnol; 2021 Sep; 37(10):168. PubMed ID: 34487256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redesigning Escherichia coli metabolism for anaerobic production of isobutanol.
    Trinh CT; Li J; Blanch HW; Clark DS
    Appl Environ Microbiol; 2011 Jul; 77(14):4894-904. PubMed ID: 21642415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selection of an endogenous 2,3-butanediol pathway in Escherichia coli by fermentative redox balance.
    Liang K; Shen CR
    Metab Eng; 2017 Jan; 39():181-191. PubMed ID: 27931827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of NAPRTase overexpression on the total levels of NAD, the NADH/NAD+ ratio, and the distribution of metabolites in Escherichia coli.
    Berríos-Rivera SJ; San KY; Bennett GN
    Metab Eng; 2002 Jul; 4(3):238-47. PubMed ID: 12616693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of the NADH pool and NADH/NADPH ratio redistributes acetoin and 2,3-butanediol proportion in Bacillus subtilis.
    Bao T; Zhang X; Zhao X; Rao Z; Yang T; Yang S
    Biotechnol J; 2015 Aug; 10(8):1298-306. PubMed ID: 26129872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted cofactor quantification in metabolically engineered E. coli using solid phase extraction and hydrophilic interaction liquid chromatography-mass spectrometry.
    Li Z; Yang A; Li Y; Liu P; Zhang Z; Zhang X; Shui W
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Mar; 1014():107-15. PubMed ID: 26894684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering of cofactor regeneration enhances (2S,3S)-2,3-butanediol production from diacetyl.
    Wang Y; Li L; Ma C; Gao C; Tao F; Xu P
    Sci Rep; 2013; 3():2643. PubMed ID: 24025762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.