BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 32954725)

  • 1. Aggregation Kinetics and Filament Structure of a Tau Fragment Are Influenced by the Sulfation Pattern of the Cofactor Heparin.
    Townsend D; Fullwood NJ; Yates EA; Middleton DA
    Biochemistry; 2020 Oct; 59(41):4003-4014. PubMed ID: 32954725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alzheimer-like changes in microtubule-associated protein Tau induced by sulfated glycosaminoglycans. Inhibition of microtubule binding, stimulation of phosphorylation, and filament assembly depend on the degree of sulfation.
    Hasegawa M; Crowther RA; Jakes R; Goedert M
    J Biol Chem; 1997 Dec; 272(52):33118-24. PubMed ID: 9407097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycan Determinants of Heparin-Tau Interaction.
    Zhao J; Huvent I; Lippens G; Eliezer D; Zhang A; Li Q; Tessier P; Linhardt RJ; Zhang F; Wang C
    Biophys J; 2017 Mar; 112(5):921-932. PubMed ID: 28297651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural impact of heparin binding to full-length Tau as studied by NMR spectroscopy.
    Sibille N; Sillen A; Leroy A; Wieruszeski JM; Mulloy B; Landrieu I; Lippens G
    Biochemistry; 2006 Oct; 45(41):12560-72. PubMed ID: 17029411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans.
    Goedert M; Jakes R; Spillantini MG; Hasegawa M; Smith MJ; Crowther RA
    Nature; 1996 Oct; 383(6600):550-3. PubMed ID: 8849730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of cysteines in accelerating Tau filament formation.
    Chidambaram H; Chinnathambi S
    J Biomol Struct Dyn; 2022 Jul; 40(10):4366-4375. PubMed ID: 33317395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative characterization of heparin binding to Tau protein: implication for inducer-mediated Tau filament formation.
    Zhu HL; Fernández C; Fan JB; Shewmaker F; Chen J; Minton AP; Liang Y
    J Biol Chem; 2010 Feb; 285(6):3592-3599. PubMed ID: 19959468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aggregation analysis of the microtubule binding domain in tau protein by spectroscopic methods.
    Yao TM; Tomoo K; Ishida T; Hasegawa H; Sasaki M; Taniguchi T
    J Biochem; 2003 Jul; 134(1):91-9. PubMed ID: 12944375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The natively unfolded character of tau and its aggregation to Alzheimer-like paired helical filaments.
    Jeganathan S; von Bergen M; Mandelkow EM; Mandelkow E
    Biochemistry; 2008 Oct; 47(40):10526-39. PubMed ID: 18783251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The 3-O sulfation of heparan sulfate proteoglycans contributes to the cellular internalization of tau aggregates.
    Ferreira A; Royaux I; Liu J; Wang Z; Su G; Moechars D; Callewaert N; De Muynck L
    BMC Mol Cell Biol; 2022 Dec; 23(1):61. PubMed ID: 36564747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Additive-Free Model for Tau Self-Assembly.
    Al-Hilaly YK; Marshall KE; Lutter L; Biasetti L; Mengham K; Harrington CR; Xue WF; Wischik CM; Serpell LC
    Methods Mol Biol; 2023; 2551():163-188. PubMed ID: 36310203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regions of tau implicated in the paired helical fragment core as defined by NMR.
    Sillen A; Leroy A; Wieruszeski JM; Loyens A; Beauvillain JC; Buée L; Landrieu I; Lippens G
    Chembiochem; 2005 Oct; 6(10):1849-56. PubMed ID: 16196016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tau (297-391) forms filaments that structurally mimic the core of paired helical filaments in Alzheimer's disease brain.
    Al-Hilaly YK; Foster BE; Biasetti L; Lutter L; Pollack SJ; Rickard JE; Storey JMD; Harrington CR; Xue WF; Wischik CM; Serpell LC
    FEBS Lett; 2020 Mar; 594(5):944-950. PubMed ID: 31721178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. O-GlcNAc modification of tau directly inhibits its aggregation without perturbing the conformational properties of tau monomers.
    Yuzwa SA; Cheung AH; Okon M; McIntosh LP; Vocadlo DJ
    J Mol Biol; 2014 Apr; 426(8):1736-52. PubMed ID: 24444746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonance Raman spectroscopic measurements delineate the structural changes that occur during tau fibril formation.
    Ramachandran G; Milán-Garcés EA; Udgaonkar JB; Puranik M
    Biochemistry; 2014 Oct; 53(41):6550-65. PubMed ID: 25284680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of glycosaminoglycans in determining the helicity of paired helical filaments.
    Arrasate M; Pérez M; Valpuesta JM; Avila J
    Am J Pathol; 1997 Oct; 151(4):1115-22. PubMed ID: 9327745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A functional fragment of Tau forms fibers without the need for an intermolecular cysteine bridge.
    Huvent I; Kamah A; Cantrelle FX; Barois N; Slomianny C; Smet-Nocca C; Landrieu I; Lippens G
    Biochem Biophys Res Commun; 2014 Mar; 445(2):299-303. PubMed ID: 24502945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational features of tau fibrils from Alzheimer's disease brain are faithfully propagated by unmodified recombinant protein.
    Morozova OA; March ZM; Robinson AS; Colby DW
    Biochemistry; 2013 Oct; 52(40):6960-7. PubMed ID: 24033133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Taxol-stabilized microtubules promote the formation of filaments from unmodified full-length Tau in vitro.
    Duan AR; Goodson HV
    Mol Biol Cell; 2012 Dec; 23(24):4796-806. PubMed ID: 23087208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct role of 2-O-, N-, and 6-O-sulfate groups of heparin in the formation of the ternary complex with basic fibroblast growth factor and soluble FGF receptor-1.
    Rusnati M; Coltrini D; Caccia P; Dell'Era P; Zoppetti G; Oreste P; Valsasina B; Presta M
    Biochem Biophys Res Commun; 1994 Aug; 203(1):450-8. PubMed ID: 8074689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.