These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 32954999)
1. Screening and Identification of Differentially Expressed Genes Between Diabetic Nephropathy Glomerular and Normal Glomerular via Bioinformatics Technology. Du J; Yang J; Meng L Comb Chem High Throughput Screen; 2021; 24(5):645-655. PubMed ID: 32954999 [TBL] [Abstract][Full Text] [Related]
2. Integrated Bioinformatics and Clinical Correlation Analysis of Key Genes, Pathways, and Potential Therapeutic Agents Related to Diabetic Nephropathy. Chen S; Chen L; Jiang H Dis Markers; 2022; 2022():9204201. PubMed ID: 35637650 [TBL] [Abstract][Full Text] [Related]
3. Seven basement membrane-specific expressed genes are considered potential biomarkers for the diagnosis and treatment of diabetic nephropathy. Gui H; Chen X; Ye L; Ma H Acta Diabetol; 2023 Apr; 60(4):493-505. PubMed ID: 36627452 [TBL] [Abstract][Full Text] [Related]
4. Identifying C1QB, ITGAM, and ITGB2 as potential diagnostic candidate genes for diabetic nephropathy using bioinformatics analysis. Hu Y; Yu Y; Dong H; Jiang W PeerJ; 2023; 11():e15437. PubMed ID: 37250717 [TBL] [Abstract][Full Text] [Related]
5. Investigation of the Mechanism of Complement System in Diabetic Nephropathy via Bioinformatics Analysis. Xu B; Wang L; Zhan H; Zhao L; Wang Y; Shen M; Xu K; Li L; Luo X; Zhou S; Tang A; Liu G; Song L; Li Y J Diabetes Res; 2021; 2021():5546199. PubMed ID: 34124269 [TBL] [Abstract][Full Text] [Related]
6. Identification of PDK4 as Hub Gene for Diabetic Nephropathy Using Co-Expression Network Analysis. Han Y; Jin L; Wang L; Wei L; Tu C Kidney Blood Press Res; 2023; 48(1):522-534. PubMed ID: 37385224 [TBL] [Abstract][Full Text] [Related]
7. Identification of miRNAs-genes regulatory network in diabetic nephropathy based on bioinformatics analysis. Yang F; Cui Z; Deng H; Wang Y; Chen Y; Li H; Yuan L Medicine (Baltimore); 2019 Jul; 98(27):e16225. PubMed ID: 31277135 [TBL] [Abstract][Full Text] [Related]
8. Nine hub genes as the potential indicator for the clinical outcome of diabetic nephropathy. Song X; Gong M; Chen Y; Liu H; Zhang J J Cell Physiol; 2019 Feb; 234(2):1461-1468. PubMed ID: 30078220 [TBL] [Abstract][Full Text] [Related]
9. Comprehensive analysis of diabetic nephropathy expression profile based on weighted gene co-expression network analysis algorithm. Gholaminejad A; Fathalipour M; Roointan A BMC Nephrol; 2021 Jul; 22(1):245. PubMed ID: 34215202 [TBL] [Abstract][Full Text] [Related]
10. Identification of tubulointerstitial genes and ceRNA networks involved in diabetic nephropathy via integrated bioinformatics approaches. Cao H; Rao X; Jia J; Yan T; Li D Hereditas; 2022 Sep; 159(1):36. PubMed ID: 36154667 [TBL] [Abstract][Full Text] [Related]
11. Identification of Hub Genes Involved in Tubulointerstitial Injury in Diabetic Nephropathy by Bioinformatics Analysis and Experiment Verification. Yang J; Peng L; Tian Y; Tang W; Peng L; Ning J; Li D; Peng Y J Immunol Res; 2022; 2022():7907708. PubMed ID: 35991124 [TBL] [Abstract][Full Text] [Related]
12. Identification of mitochondria-related genes as diagnostic biomarkers for diabetic nephropathy and their correlation with immune infiltration: New insights from bioinformatics analysis. Yan Q; Du Y; Huang F; Zhang Q; Zhan M; Wu J; Yan J; Zhang P; Lin H; Han L; Huang X Int Immunopharmacol; 2024 Dec; 142(Pt A):113114. PubMed ID: 39265357 [TBL] [Abstract][Full Text] [Related]
13. Bioinformatic analysis of specific genes in diabetic nephropathy. Fu F; Wei X; Liu J; Mi N Ren Fail; 2015 Aug; 37(7):1219-24. PubMed ID: 26156684 [TBL] [Abstract][Full Text] [Related]
14. Investigation of hub genes involved in diabetic nephropathy using biological informatics methods. Li Z; Liu J; Wang W; Zhao Y; Yang D; Geng X Ann Transl Med; 2020 Sep; 8(17):1087. PubMed ID: 33145306 [TBL] [Abstract][Full Text] [Related]
15. Integrative analyses of biomarkers and pathways for diabetic nephropathy. Li B; Zhao X; Xie W; Hong Z; Zhang Y Front Genet; 2023; 14():1128136. PubMed ID: 37113991 [No Abstract] [Full Text] [Related]
16. Identification of pyroptosis-related genes and potential drugs in diabetic nephropathy. Yan M; Li W; Wei R; Li S; Liu Y; Huang Y; Zhang Y; Lu Z; Lu Q J Transl Med; 2023 Jul; 21(1):490. PubMed ID: 37480090 [TBL] [Abstract][Full Text] [Related]
17. Identification of Key Genes of Human Advanced Diabetic Nephropathy Independent of Proteinuria by Transcriptome Analysis. Cai F; Zhou X; Jia Y; Yao W; Lv J; Liu G; Yang L Biomed Res Int; 2020; 2020():7283581. PubMed ID: 32685522 [TBL] [Abstract][Full Text] [Related]
18. Identification of key biomarkers in diabetic nephropathy via bioinformatic analysis. Zeng M; Liu J; Yang W; Zhang S; Liu F; Dong Z; Peng Y; Sun L; Xiao L J Cell Biochem; 2019 May; 120(5):8676-8688. PubMed ID: 30485525 [TBL] [Abstract][Full Text] [Related]
19. Apoptosis and NETotic cell death affect diabetic nephropathy independently: An study integrative study encompassing bioinformatics, machine learning, and experimental validation. Cai H; Zeng Y; Luo D; Shao Y; Liu M; Wu J; Gao X; Zheng J; Zhou L; Liu F Genomics; 2024 Jul; 116(4):110879. PubMed ID: 38851464 [TBL] [Abstract][Full Text] [Related]
20. Integrated analysis of potential gene crosstalk between non-alcoholic fatty liver disease and diabetic nephropathy. Yan Q; Zhao Z; Liu D; Li J; Pan S; Duan J; Dong J; Liu Z Front Endocrinol (Lausanne); 2022; 13():1032814. PubMed ID: 36387855 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]