BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 32955019)

  • 1. Electronic transport properties of hydrogenated and fluorinated graphene: a computational study.
    Khatami MM; Gaddemane G; Van de Put ML; Moravvej-Farshi MK; Vandenberghe WG
    J Phys Condens Matter; 2020 Sep; 32(49):495502. PubMed ID: 32955019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic Transport Properties of Silicane Determined from First Principles.
    Khatami MM; Gaddemane G; Van de Put ML; Fischetti MV; Moravvej-Farshi MK; Pourfath M; Vandenberghe WG
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31514338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical Study on Carrier Mobility of Hydrogenated Graphene/Hexagonal Boron-Nitride Heterobilayer.
    Ye Z; Geng H; Zheng X
    Nanoscale Res Lett; 2018 Nov; 13(1):376. PubMed ID: 30467605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Realizing semiconductor-half-metal transition in zigzag graphene nanoribbons supported on hybrid fluorographene-graphane nanoribbons.
    Tang S; Cao X
    Phys Chem Chem Phys; 2014 Nov; 16(42):23214-23. PubMed ID: 25254929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2D Ca
    Du J; Shi JJ
    Adv Mater; 2019 Dec; 31(51):e1905643. PubMed ID: 31682038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo Study of Electronic Transport in Monolayer InSe.
    Gopalan S; Gaddemane G; Put MLV; Fischetti AMV
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31847429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive approach to intrinsic charge carrier mobility in conjugated organic molecules, macromolecules, and supramolecular architectures.
    Saeki A; Koizumi Y; Aida T; Seki S
    Acc Chem Res; 2012 Aug; 45(8):1193-202. PubMed ID: 22676381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsically Honeycomb-Patterned Hydrogenated Graphene.
    Song Y; Qian K; Tao L; Wang Z; Guo H; Chen H; Zhang S; Zhang YY; Lin X; Pantelides ST; Du S; Gao HJ
    Small; 2022 Jan; 18(4):e2102687. PubMed ID: 34846103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning the electronic properties and work functions of graphane/fully hydrogenated h-BN heterobilayers via heteronuclear dihydrogen bonding and electric field control.
    Liang Q; Jiang J; Meng R; Ye H; Tan C; Yang Q; Sun X; Yang D; Chen X
    Phys Chem Chem Phys; 2016 Jun; 18(24):16386-95. PubMed ID: 27265511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Al2C Monolayer Sheet and Nanoribbons with Unique Direction-Dependent Acoustic-Phonon-Limited Carrier Mobility and Carrier Polarity.
    Xu Y; Dai J; Zeng XC
    J Phys Chem Lett; 2016 Jan; 7(2):302-7. PubMed ID: 26722716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphane and hydrogenated graphene.
    Pumera M; Wong CH
    Chem Soc Rev; 2013 Jul; 42(14):5987-95. PubMed ID: 23686139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of flexural phonons in carrier mobility of two-dimensional semiconductors: free standing vs on substrate.
    Zhang C; Cheng L; Liu Y
    J Phys Condens Matter; 2021 May; 33(23):. PubMed ID: 33621967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charge-induced electromechanical actuation of two-dimensional hexagonal and pentagonal materials.
    Thanh VV; Truong DV; Tuan Hung N
    Phys Chem Chem Phys; 2019 Oct; 21(40):22377-22384. PubMed ID: 31577295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene's cousin: the present and future of graphane.
    Zhou C; Chen S; Lou J; Wang J; Yang Q; Liu C; Huang D; Zhu T
    Nanoscale Res Lett; 2014 Jan; 9(1):26. PubMed ID: 24417937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into electronic properties of strained two-dimensional semiconductors by out-of-plane bending.
    Chen D; Wang L; Lv Y; Liao L; Li K; Jiang C
    J Phys Condens Matter; 2023 Apr; 35(28):. PubMed ID: 37040788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning the electronic and mechanical properties of penta-graphene via hydrogenation and fluorination.
    Li X; Zhang S; Wang FQ; Guo Y; Liu J; Wang Q
    Phys Chem Chem Phys; 2016 Jun; 18(21):14191-7. PubMed ID: 27063837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Velocity Saturation in Graphene Encapsulated by Hexagonal Boron Nitride.
    Yamoah MA; Yang W; Pop E; Goldhaber-Gordon D
    ACS Nano; 2017 Oct; 11(10):9914-9919. PubMed ID: 28880529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-dimensional BX (X = P, As, Sb) semiconductors with mobilities approaching graphene.
    Xie M; Zhang S; Cai B; Zhu Z; Zou Y; Zeng H
    Nanoscale; 2016 Jul; 8(27):13407-13. PubMed ID: 27346538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low Exciton-Phonon Coupling, High Charge Carrier Mobilities, and Multiexciton Properties in Two-Dimensional Lead, Silver, Cadmium, and Copper Chalcogenide Nanostructures.
    Ding Y; Singh V; Goodman SM; Nagpal P
    J Phys Chem Lett; 2014 Dec; 5(24):4291-7. PubMed ID: 26273976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The origin of intrinsic charge transport for Dirac carbon sheet materials: roles of acetylenic linkage and electron-phonon couplings.
    Liu C; Yang J; Xi J; Ke X
    Nanoscale; 2019 Jun; 11(22):10828-10837. PubMed ID: 31135021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.