These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 32955040)

  • 1. Modulation of electronic structures in two-dimensional electrocatalysts for the hydrogen evolution reaction.
    Xie J; Qi J; Lei F; Xie Y
    Chem Commun (Camb); 2020 Oct; 56(80):11910-11930. PubMed ID: 32955040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defect engineering in two-dimensional electrocatalysts for hydrogen evolution.
    Xie J; Yang X; Xie Y
    Nanoscale; 2020 Feb; 12(7):4283-4294. PubMed ID: 32043515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic Modulation of Non-Precious-Metal Electrocatalysts for Advanced Water Splitting.
    Jiang WJ; Tang T; Zhang Y; Hu JS
    Acc Chem Res; 2020 Jun; 53(6):1111-1123. PubMed ID: 32466638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes.
    Zhu YP; Guo C; Zheng Y; Qiao SZ
    Acc Chem Res; 2017 Apr; 50(4):915-923. PubMed ID: 28205437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Earth-Abundant Transition-Metal-Based Bifunctional Electrocatalysts for Overall Water Splitting in Alkaline Media.
    Yu J; Le TA; Tran NQ; Lee H
    Chemistry; 2020 May; 26(29):6423-6436. PubMed ID: 32103541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 2D nanocomposite materials for HER electrocatalysts - a review.
    Sobhani Bazghale F; Gilak MR; Zamani Pedram M; Torabi F; Naikoo GA
    Heliyon; 2024 Jan; 10(1):e23450. PubMed ID: 38192770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing electrocatalytic water splitting by surface defect engineering in two-dimensional electrocatalysts.
    Wu T; Dong C; Sun D; Huang F
    Nanoscale; 2021 Jan; 13(3):1581-1595. PubMed ID: 33444426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic structural regulation of CoP nanorods by the tunable incorporation of oxygen for enhanced electrocatalytic activity during the hydrogen evolution reaction.
    Ma Y; Zhou G; Liu Z; Xu L; Sun D; Tang Y
    Nanoscale; 2020 Jul; 12(27):14733-14738. PubMed ID: 32618988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Advances on Two-Dimensional Nanomaterials Supported Single-Atom for Hydrogen Evolution Electrocatalysts.
    Fu K; Yuan D; Yu T; Lei C; Kou Z; Huang B; Lyu S; Zhang F; Wan T
    Molecules; 2024 Sep; 29(18):. PubMed ID: 39339299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimizing Atomically Dispersed Metal Electrocatalysts for Hydrogen Evolution: Chemical Coordination Effect and Electronic Metal Support Interaction.
    Jiang S; Xue D; Zhang JN
    Chem Asian J; 2022 Jul; 17(14):e202200319. PubMed ID: 35570194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface/Interfacial Engineering of Inorganic Low-Dimensional Electrode Materials for Electrocatalysis.
    Chen P; Tong Y; Wu C; Xie Y
    Acc Chem Res; 2018 Nov; 51(11):2857-2866. PubMed ID: 30375850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity Origins in Nanocarbons for the Electrocatalytic Hydrogen Evolution Reaction.
    Zhang L; Jia Y; Yan X; Yao X
    Small; 2018 Jun; 14(26):e1800235. PubMed ID: 29726095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing Electrocatalytic Water Splitting by Strain Engineering.
    You B; Tang MT; Tsai C; Abild-Pedersen F; Zheng X; Li H
    Adv Mater; 2019 Apr; 31(17):e1807001. PubMed ID: 30773741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing Self-Supported Electrocatalysts for Electrochemical Water Splitting: Surface/Interface Engineering toward Enhanced Electrocatalytic Performance.
    Wang P; Wang B
    ACS Appl Mater Interfaces; 2021 Dec; 13(50):59593-59617. PubMed ID: 34878246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanostructured materials on 3D nickel foam as electrocatalysts for water splitting.
    Chaudhari NK; Jin H; Kim B; Lee K
    Nanoscale; 2017 Aug; 9(34):12231-12247. PubMed ID: 28819660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molybdenum Carbide-Based Electrocatalysts for Hydrogen Evolution Reaction.
    Miao M; Pan J; He T; Yan Y; Xia BY; Wang X
    Chemistry; 2017 Aug; 23(46):10947-10961. PubMed ID: 28474426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Progress in Graphene-Based Electrocatalysts for Hydrogen Evolution Reaction.
    Qin X; Ola O; Zhao J; Yang Z; Tiwari SK; Wang N; Zhu Y
    Nanomaterials (Basel); 2022 May; 12(11):. PubMed ID: 35683662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent progress of electrochemical hydrogen evolution over 1T-MoS
    Zhang Y; Wang L; Chen Q; Cao J; Zhang C
    Front Chem; 2022; 10():1000406. PubMed ID: 36277349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Advances in Co-Based Electrocatalysts for Hydrogen Evolution Reaction.
    Wang B; Yang F; Feng L
    Small; 2023 Nov; 19(45):e2302866. PubMed ID: 37434101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchical porous bimetal-sulfide bi-functional nanocatalysts for hydrogen production by overall water electrolysis.
    Chen W; Zhang Y; Chen G; Huang R; Wu Y; Zhou Y; Hu Y; Ostrikov KK
    J Colloid Interface Sci; 2020 Feb; 560():426-435. PubMed ID: 31679785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.