These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 32955150)

  • 1. Heteroatom Doping Strategy for Establishing Hematite Homojunction as Efficient Photocatalyst for Accelerating Water Splitting.
    Tao SM; Chung RJ; Lin LY
    Chem Asian J; 2020 Nov; 15(22):3853-3860. PubMed ID: 32955150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Titanium-Doped SiOx Passivation Layer for Greatly Enhanced Performance of a Hematite-Based Photoelectrochemical System.
    Ahn HJ; Yoon KY; Kwak MJ; Jang JH
    Angew Chem Int Ed Engl; 2016 Aug; 55(34):9922-6. PubMed ID: 27358249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Branched Ca-Fe
    Chen D; Liu Z; Guo Z; Ruan M; Yan W
    ChemSusChem; 2019 Jul; 12(14):3286-3295. PubMed ID: 31140747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual-Axial Gradient Doping (Zr and Sn) on Hematite for Promoting Charge Separation in Photoelectrochemical Water Splitting.
    Chen D; Liu Z
    ChemSusChem; 2018 Oct; 11(19):3438-3448. PubMed ID: 30098118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Photoelectrochemical Water Oxidation Performance in Bilayer TiO
    Li H; Yin M; Li X; Mo R
    ChemSusChem; 2021 Jun; 14(11):2331-2340. PubMed ID: 33650268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uniform Doping of Titanium in Hematite Nanorods for Efficient Photoelectrochemical Water Splitting.
    Wang D; Chen H; Chang G; Lin X; Zhang Y; Aldalbahi A; Peng C; Wang J; Fan C
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):14072-8. PubMed ID: 26052922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NiO Nanoparticles Anchored on Phosphorus-Doped α-Fe
    Li F; Li J; Zhang J; Gao L; Long X; Hu Y; Li S; Jin J; Ma J
    ChemSusChem; 2018 Jul; 11(13):2156-2164. PubMed ID: 29768719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Facile Surface Passivation of Hematite Photoanodes with Iron Titanate Cocatalyst for Enhanced Water Splitting.
    Wang L; Nguyen NT; Schmuki P
    ChemSusChem; 2016 Aug; 9(16):2048-53. PubMed ID: 27348809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Charge Separation through ALD-Modified Fe2 O3 /Fe2 TiO5 Nanorod Heterojunction for Photoelectrochemical Water Oxidation.
    Li C; Wang T; Luo Z; Liu S; Gong J
    Small; 2016 Jul; 12(25):3415-22. PubMed ID: 27197643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sb-Doped SnO
    Han H; Kment S; Karlicky F; Wang L; Naldoni A; Schmuki P; Zboril R
    Small; 2018 May; 14(19):e1703860. PubMed ID: 29655304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of α-Fe
    Makimizu Y; Nguyen NT; Tucek J; Ahn HJ; Yoo J; Poornajar M; Hwang I; Kment S; Schmuki P
    Chemistry; 2020 Feb; 26(12):2685-2692. PubMed ID: 31788871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surviving High-Temperature Calcination: ZrO
    Li C; Li A; Luo Z; Zhang J; Chang X; Huang Z; Wang T; Gong J
    Angew Chem Int Ed Engl; 2017 Apr; 56(15):4150-4155. PubMed ID: 28220996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergy of Ultrathin CoO
    Mao L; Huang YC; Deng H; Meng F; Fu Y; Wang Y; Li M; Zhang Q; Dong CL; Gu L; Shen S
    Small; 2023 Feb; 19(7):e2203838. PubMed ID: 36511178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Covalent SO Bonding Enables Enhanced Photoelectrochemical Performance of Cu
    Zhang Y; Huang Y; Zhu SS; Liu YY; Zhang X; Wang JJ; Braun A
    Small; 2021 Jul; 17(30):e2100320. PubMed ID: 34151514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interface Engineering of CoFe-LDH Modified Ti: α-Fe
    Chang Y; Han M; Ding Y; Wei H; Zhang D; Luo H; Li X; Yan X
    Nanomaterials (Basel); 2023 Sep; 13(18):. PubMed ID: 37764609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gradient tantalum-doped hematite homojunction photoanode improves both photocurrents and turn-on voltage for solar water splitting.
    Zhang H; Li D; Byun WJ; Wang X; Shin TJ; Jeong HY; Han H; Li C; Lee JS
    Nat Commun; 2020 Sep; 11(1):4622. PubMed ID: 32934221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile synthesis of an ultrathin ZIF-67 layer on the surface of Sn/Ti co-doped hematite for efficient photoelectrochemical water oxidation.
    Huang P; Miao X; Wu J; Zhang P; Zhang H; Bai S; Liu W
    Dalton Trans; 2022 Jun; 51(22):8848-8854. PubMed ID: 35621155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ferrihydrite-Modified Ti-Fe
    Bu Q; Li S; Wu Q; Bi L; Lin Y; Wang D; Zou X; Xie T
    ChemSusChem; 2018 Oct; 11(19):3486-3494. PubMed ID: 30091281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-temperature activation of hematite nanowires for photoelectrochemical water oxidation.
    Ling Y; Wang G; Wang H; Yang Y; Li Y
    ChemSusChem; 2014 Mar; 7(3):848-53. PubMed ID: 24493003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining Bulk/Surface Engineering of Hematite To Synergistically Improve Its Photoelectrochemical Water Splitting Performance.
    Yuan Y; Gu J; Ye KH; Chai Z; Yu X; Chen X; Zhao C; Zhang Y; Mai W
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16071-7. PubMed ID: 27275649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.