These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 32955303)

  • 1. Effects of the Transverse Instability and Wave Breaking on the Laser-Driven Thin Foil Acceleration.
    Wan Y; Andriyash IA; Lu W; Mori WB; Malka V
    Phys Rev Lett; 2020 Sep; 125(10):104801. PubMed ID: 32955303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical investigation of the transverse instability on the radiation-pressure-driven foil.
    Wang WQ; Yin Y; Yu TP; Xu H; Zou DB; Shao FQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063111. PubMed ID: 26764842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical Mechanism of the Transverse Instability in Radiation Pressure Ion Acceleration.
    Wan Y; Pai CH; Zhang CJ; Li F; Wu YP; Hua JF; Lu W; Gu YQ; Silva LO; Joshi C; Mori WB
    Phys Rev Lett; 2016 Dec; 117(23):234801. PubMed ID: 27982647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron heating in radiation-pressure-driven proton acceleration with a circularly polarized laser.
    Paradkar BS; Krishnagopal S
    Phys Rev E; 2016 Feb; 93(2):023203. PubMed ID: 26986428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of transverse ablative Rayleigh-Taylor-like instability in the hole-boring radiation pressure acceleration by using elliptically polarized laser pulses.
    Wu D; Zheng CY; Qiao B; Zhou CT; Yan XQ; Yu MY; He XT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):023101. PubMed ID: 25215833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical mechanism of the electron-ion coupled transverse instability in laser pressure ion acceleration for different regimes.
    Wan Y; Pai CH; Zhang CJ; Li F; Wu YP; Hua JF; Lu W; Joshi C; Mori WB; Malka V
    Phys Rev E; 2018 Jul; 98(1-1):013202. PubMed ID: 30110864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient laser-ion acceleration from closely stacked ultrathin foils.
    Kluge T; Enghardt W; Kraft SD; Schramm U; Sentoku Y; Zeil K; Cowan TE; Sauerbrey R; Bussmann M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):016405. PubMed ID: 20866745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiation-pressure acceleration of ion beams driven by circularly polarized laser pulses.
    Henig A; Steinke S; Schnürer M; Sokollik T; Hörlein R; Kiefer D; Jung D; Schreiber J; Hegelich BM; Yan XQ; Meyer-ter-Vehn J; Tajima T; Nickles PV; Sandner W; Habs D
    Phys Rev Lett; 2009 Dec; 103(24):245003. PubMed ID: 20366205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scaling laws for laser-driven ion acceleration from nanometer-scale ultrathin foils.
    Shen XF; Qiao B; Pukhov A; Kar S; Zhu SP; Borghesi M; He XT
    Phys Rev E; 2021 Aug; 104(2-2):025210. PubMed ID: 34525575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amplification of Relativistic Electron Bunches by Acceleration in Laser Fields.
    Braenzel J; Andreev AA; Abicht F; Ehrentraut L; Platonov K; Schnürer M
    Phys Rev Lett; 2017 Jan; 118(1):014801. PubMed ID: 28106423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme.
    Higginson A; Gray RJ; King M; Dance RJ; Williamson SDR; Butler NMH; Wilson R; Capdessus R; Armstrong C; Green JS; Hawkes SJ; Martin P; Wei WQ; Mirfayzi SR; Yuan XH; Kar S; Borghesi M; Clarke RJ; Neely D; McKenna P
    Nat Commun; 2018 Feb; 9(1):724. PubMed ID: 29463872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable laser-driven proton beam acceleration from a two-ion-species ultrathin foil.
    Yu TP; Pukhov A; Shvets G; Chen M
    Phys Rev Lett; 2010 Aug; 105(6):065002. PubMed ID: 20867984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards optical polarization control of laser-driven proton acceleration in foils undergoing relativistic transparency.
    Gonzalez-Izquierdo B; King M; Gray RJ; Wilson R; Dance RJ; Powell H; Maclellan DA; McCreadie J; Butler NMH; Hawkes S; Green JS; Murphy CD; Stockhausen LC; Carroll DC; Booth N; Scott GG; Borghesi M; Neely D; McKenna P
    Nat Commun; 2016 Sep; 7():12891. PubMed ID: 27624920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion acceleration from microstructured targets irradiated by high-intensity picosecond laser pulses.
    Bailly-Grandvaux M; Kawahito D; McGuffey C; Strehlow J; Edghill B; Wei MS; Alexander N; Haid A; Brabetz C; Bagnoud V; Hollinger R; Capeluto MG; Rocca JJ; Beg FN
    Phys Rev E; 2020 Aug; 102(2-1):021201. PubMed ID: 32942368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved energy spread in the radiation pressure acceleration of protons with a linearly polarized laser.
    Paradkar BS
    Phys Rev E; 2023 Aug; 108(2-2):025203. PubMed ID: 37723803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser Acceleration of Highly Energetic Carbon Ions Using a Double-Layer Target Composed of Slightly Underdense Plasma and Ultrathin Foil.
    Ma WJ; Kim IJ; Yu JQ; Choi IW; Singh PK; Lee HW; Sung JH; Lee SK; Lin C; Liao Q; Zhu JG; Lu HY; Liu B; Wang HY; Xu RF; He XT; Chen JE; Zepf M; Schreiber J; Yan XQ; Nam CH
    Phys Rev Lett; 2019 Jan; 122(1):014803. PubMed ID: 31012707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of ion acceleration in the interaction of intense femtosecond laser pulses with ultrathin foils.
    Dong QL; Sheng ZM; Yu MY; Zhang J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026408. PubMed ID: 14525121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced collimated GeV monoenergetic ion acceleration from a shaped foil target irradiated by a circularly polarized laser pulse.
    Chen M; Pukhov A; Yu TP; Sheng ZM
    Phys Rev Lett; 2009 Jul; 103(2):024801. PubMed ID: 19659213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photon bubbles and ion acceleration in a plasma dominated by the radiation pressure of an electromagnetic pulse.
    Pegoraro F; Bulanov SV
    Phys Rev Lett; 2007 Aug; 99(6):065002. PubMed ID: 17930836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic field generation by the Rayleigh-Taylor instability in laser-driven planar plastic targets.
    Gao L; Nilson PM; Igumenschev IV; Hu SX; Davies JR; Stoeckl C; Haines MG; Froula DH; Betti R; Meyerhofer DD
    Phys Rev Lett; 2012 Sep; 109(11):115001. PubMed ID: 23005637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.