These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 32955303)
1. Effects of the Transverse Instability and Wave Breaking on the Laser-Driven Thin Foil Acceleration. Wan Y; Andriyash IA; Lu W; Mori WB; Malka V Phys Rev Lett; 2020 Sep; 125(10):104801. PubMed ID: 32955303 [TBL] [Abstract][Full Text] [Related]
2. Numerical investigation of the transverse instability on the radiation-pressure-driven foil. Wang WQ; Yin Y; Yu TP; Xu H; Zou DB; Shao FQ Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063111. PubMed ID: 26764842 [TBL] [Abstract][Full Text] [Related]
3. Physical Mechanism of the Transverse Instability in Radiation Pressure Ion Acceleration. Wan Y; Pai CH; Zhang CJ; Li F; Wu YP; Hua JF; Lu W; Gu YQ; Silva LO; Joshi C; Mori WB Phys Rev Lett; 2016 Dec; 117(23):234801. PubMed ID: 27982647 [TBL] [Abstract][Full Text] [Related]
4. Electron heating in radiation-pressure-driven proton acceleration with a circularly polarized laser. Paradkar BS; Krishnagopal S Phys Rev E; 2016 Feb; 93(2):023203. PubMed ID: 26986428 [TBL] [Abstract][Full Text] [Related]
5. Suppression of transverse ablative Rayleigh-Taylor-like instability in the hole-boring radiation pressure acceleration by using elliptically polarized laser pulses. Wu D; Zheng CY; Qiao B; Zhou CT; Yan XQ; Yu MY; He XT Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):023101. PubMed ID: 25215833 [TBL] [Abstract][Full Text] [Related]
6. Physical mechanism of the electron-ion coupled transverse instability in laser pressure ion acceleration for different regimes. Wan Y; Pai CH; Zhang CJ; Li F; Wu YP; Hua JF; Lu W; Joshi C; Mori WB; Malka V Phys Rev E; 2018 Jul; 98(1-1):013202. PubMed ID: 30110864 [TBL] [Abstract][Full Text] [Related]
13. Towards optical polarization control of laser-driven proton acceleration in foils undergoing relativistic transparency. Gonzalez-Izquierdo B; King M; Gray RJ; Wilson R; Dance RJ; Powell H; Maclellan DA; McCreadie J; Butler NMH; Hawkes S; Green JS; Murphy CD; Stockhausen LC; Carroll DC; Booth N; Scott GG; Borghesi M; Neely D; McKenna P Nat Commun; 2016 Sep; 7():12891. PubMed ID: 27624920 [TBL] [Abstract][Full Text] [Related]
14. Ion acceleration from microstructured targets irradiated by high-intensity picosecond laser pulses. Bailly-Grandvaux M; Kawahito D; McGuffey C; Strehlow J; Edghill B; Wei MS; Alexander N; Haid A; Brabetz C; Bagnoud V; Hollinger R; Capeluto MG; Rocca JJ; Beg FN Phys Rev E; 2020 Aug; 102(2-1):021201. PubMed ID: 32942368 [TBL] [Abstract][Full Text] [Related]
15. Improved energy spread in the radiation pressure acceleration of protons with a linearly polarized laser. Paradkar BS Phys Rev E; 2023 Aug; 108(2-2):025203. PubMed ID: 37723803 [TBL] [Abstract][Full Text] [Related]
16. Laser Acceleration of Highly Energetic Carbon Ions Using a Double-Layer Target Composed of Slightly Underdense Plasma and Ultrathin Foil. Ma WJ; Kim IJ; Yu JQ; Choi IW; Singh PK; Lee HW; Sung JH; Lee SK; Lin C; Liao Q; Zhu JG; Lu HY; Liu B; Wang HY; Xu RF; He XT; Chen JE; Zepf M; Schreiber J; Yan XQ; Nam CH Phys Rev Lett; 2019 Jan; 122(1):014803. PubMed ID: 31012707 [TBL] [Abstract][Full Text] [Related]
17. Optimization of ion acceleration in the interaction of intense femtosecond laser pulses with ultrathin foils. Dong QL; Sheng ZM; Yu MY; Zhang J Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026408. PubMed ID: 14525121 [TBL] [Abstract][Full Text] [Related]
18. Enhanced collimated GeV monoenergetic ion acceleration from a shaped foil target irradiated by a circularly polarized laser pulse. Chen M; Pukhov A; Yu TP; Sheng ZM Phys Rev Lett; 2009 Jul; 103(2):024801. PubMed ID: 19659213 [TBL] [Abstract][Full Text] [Related]
19. Photon bubbles and ion acceleration in a plasma dominated by the radiation pressure of an electromagnetic pulse. Pegoraro F; Bulanov SV Phys Rev Lett; 2007 Aug; 99(6):065002. PubMed ID: 17930836 [TBL] [Abstract][Full Text] [Related]
20. Magnetic field generation by the Rayleigh-Taylor instability in laser-driven planar plastic targets. Gao L; Nilson PM; Igumenschev IV; Hu SX; Davies JR; Stoeckl C; Haines MG; Froula DH; Betti R; Meyerhofer DD Phys Rev Lett; 2012 Sep; 109(11):115001. PubMed ID: 23005637 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]