BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 32955614)

  • 1. Circumventing the Crabtree effect: forcing oxidative phosphorylation (OXPHOS) via galactose medium increases sensitivity of HepG2 cells to the purine derivative kinetin riboside.
    Orlicka-Płocka M; Gurda-Wozna D; Fedoruk-Wyszomirska A; Wyszko E
    Apoptosis; 2020 Dec; 25(11-12):835-852. PubMed ID: 32955614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circumventing the Crabtree effect: replacing media glucose with galactose increases susceptibility of HepG2 cells to mitochondrial toxicants.
    Marroquin LD; Hynes J; Dykens JA; Jamieson JD; Will Y
    Toxicol Sci; 2007 Jun; 97(2):539-47. PubMed ID: 17361016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetin riboside preferentially induces apoptosis by modulating Bcl-2 family proteins and caspase-3 in cancer cells.
    Choi BH; Kim W; Wang QC; Kim DC; Tan SN; Yong JW; Kim KT; Yoon HS
    Cancer Lett; 2008 Mar; 261(1):37-45. PubMed ID: 18162289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antiproliferative activity of kinetin riboside on HCT-15 colon cancer cell line.
    Rajabi M; Gorincioi E; Santaniello E
    Nucleosides Nucleotides Nucleic Acids; 2012; 31(6):474-81. PubMed ID: 22646087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sodium valproate induces mitochondrial respiration dysfunction in HepG2 in vitro cell model.
    Komulainen T; Lodge T; Hinttala R; Bolszak M; Pietilä M; Koivunen P; Hakkola J; Poulton J; Morten KJ; Uusimaa J
    Toxicology; 2015 May; 331():47-56. PubMed ID: 25745980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implications of Oxidative Stress in Glioblastoma Multiforme Following Treatment with Purine Derivatives.
    Orlicka-Płocka M; Fedoruk-Wyszomirska A; Gurda-Woźna D; Pawelczak P; Krawczyk P; Giel-Pietraszuk M; Framski G; Ostrowski T; Wyszko E
    Antioxidants (Basel); 2021 Jun; 10(6):. PubMed ID: 34204594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of kinetin riboside on proliferation and proapoptotic activities in human normal and cancer cell lines.
    Dudzik P; Dulińska-Litewka J; Wyszko E; Jędrychowska P; Opałka M; Barciszewski J; Laidler P
    J Cell Biochem; 2011 Aug; 112(8):2115-24. PubMed ID: 21465535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic insights into selective killing of OXPHOS-dependent cancer cells by arctigenin.
    Brecht K; Riebel V; Couttet P; Paech F; Wolf A; Chibout SD; Pognan F; Krähenbühl S; Uteng M
    Toxicol In Vitro; 2017 Apr; 40():55-65. PubMed ID: 27923774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The experimental chemotherapeutic N6-furfuryladenosine (kinetin-riboside) induces rapid ATP depletion, genotoxic stress, and CDKN1A(p21) upregulation in human cancer cell lines.
    Cabello CM; Bair WB; Ley S; Lamore SD; Azimian S; Wondrak GT
    Biochem Pharmacol; 2009 Apr; 77(7):1125-38. PubMed ID: 19186174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of mitochondrial bioenergetics in a skeletal muscle cell line model of mitochondrial toxicity.
    Dott W; Mistry P; Wright J; Cain K; Herbert KE
    Redox Biol; 2014; 2():224-33. PubMed ID: 24494197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circumventing the Crabtree Effect: A method to induce lactate consumption and increase oxidative phosphorylation in cell culture.
    Mot AI; Liddell JR; White AR; Crouch PJ
    Int J Biochem Cell Biol; 2016 Oct; 79():128-138. PubMed ID: 27590850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Biological activity of N6-furfuryladenosine].
    Wawrzyniak D; Rolle K; Barciszewski J
    Postepy Biochem; 2019 Jun; 65(2):109-117. PubMed ID: 31642649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bcl-x
    Pfeiffer A; Schneider J; Bueno D; Dolga A; Voss TD; Lewerenz J; Wüllner V; Methner A
    Free Radic Biol Med; 2017 Nov; 112():350-359. PubMed ID: 28807815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Could the kinetin riboside be used to inhibit human prostate cell epithelial-mesenchymal transition?
    Dulińska-Litewka J; Gąsiorkiewicz B; Litewka A; Gil D; Gołąbek T; Okoń K
    Med Oncol; 2020 Feb; 37(3):17. PubMed ID: 32030542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mitochondria-targeted imidazole substituted oleic acid 'TPP-IOA' affects mitochondrial bioenergetics and its protective efficacy in cells is influenced by cellular dependence on aerobic metabolism.
    Maddalena LA; Ghelfi M; Atkinson J; Stuart JA
    Biochim Biophys Acta Bioenerg; 2017 Jan; 1858(1):73-85. PubMed ID: 27836699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The α-tocopherol derivative ESeroS-GS induces cell death and inhibits cell motility of breast cancer cells through the regulation of energy metabolism.
    Zhao L; Zhao X; Zhao K; Wei P; Fang Y; Zhang F; Zhang B; Ogata K; Mori A; Wei T
    Eur J Pharmacol; 2014 Dec; 745():98-107. PubMed ID: 25446928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Negative modulation of mitochondrial oxidative phosphorylation by epigallocatechin-3 gallate leads to growth arrest and apoptosis in human malignant pleural mesothelioma cells.
    Valenti D; de Bari L; Manente GA; Rossi L; Mutti L; Moro L; Vacca RA
    Biochim Biophys Acta; 2013 Dec; 1832(12):2085-96. PubMed ID: 23911347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BA6 Induces Apoptosis via Stimulation of Reactive Oxygen Species and Inhibition of Oxidative Phosphorylation in Human Lung Cancer Cells.
    Cheng MH; Huang HL; Lin YY; Tsui KH; Chen PC; Cheng SY; Chong IW; Sung PJ; Tai MH; Wen ZH; Chen NF; Kuo HM
    Oxid Med Cell Longev; 2019; 2019():6342104. PubMed ID: 31205586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Availability of the key metabolic substrates dictates the respiratory response of cancer cells to the mitochondrial uncoupling.
    Zhdanov AV; Waters AH; Golubeva AV; Dmitriev RI; Papkovsky DB
    Biochim Biophys Acta; 2014 Jan; 1837(1):51-62. PubMed ID: 23891695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brusatol Protects HepG2 Cells against Oxygen-Glucose Deprivation-Induced Injury via Inhibiting Mitochondrial Reactive Oxygen Species-Induced Oxidative Stress.
    Zhu S; Liu S; Wang L; Ding W; Sha J; Qian H; Lu Y
    Pharmacology; 2020; 105(7-8):416-423. PubMed ID: 31825932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.