These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 32955620)
1. Construction of high-density genetic maps defined sex determination region of the Y chromosome in spinach. Yu L; Ma X; Deng B; Yue J; Ming R Mol Genet Genomics; 2021 Jan; 296(1):41-53. PubMed ID: 32955620 [TBL] [Abstract][Full Text] [Related]
2. Construction of a high-density genetic map and the X/Y sex-determining gene mapping in spinach based on large-scale markers developed by specific-locus amplified fragment sequencing (SLAF-seq). Qian W; Fan G; Liu D; Zhang H; Wang X; Wu J; Xu Z BMC Genomics; 2017 Apr; 18(1):276. PubMed ID: 28376721 [TBL] [Abstract][Full Text] [Related]
3. Molecular insights into the non-recombining nature of the spinach male-determining region. Kudoh T; Takahashi M; Osabe T; Toyoda A; Hirakawa H; Suzuki Y; Ohmido N; Onodera Y Mol Genet Genomics; 2018 Apr; 293(2):557-568. PubMed ID: 29222702 [TBL] [Abstract][Full Text] [Related]
4. Identification of structural variation and polymorphisms of a sex co-segregating scaffold in spinach. Yu L; Ma X; Wadlington W; Ming R Plant Reprod; 2022 Mar; 35(1):19-30. PubMed ID: 34319458 [TBL] [Abstract][Full Text] [Related]
5. Comparison of Spinach Sex Chromosomes with Sugar Beet Autosomes Reveals Extensive Synteny and Low Recombination at the Male-Determining Locus. Takahata S; Yago T; Iwabuchi K; Hirakawa H; Suzuki Y; Onodera Y J Hered; 2016; 107(7):679-685. PubMed ID: 27563071 [TBL] [Abstract][Full Text] [Related]
6. The spinach YY genome reveals sex chromosome evolution, domestication, and introgression history of the species. Ma X; Yu L; Fatima M; Wadlington WH; Hulse-Kemp AM; Zhang X; Zhang S; Xu X; Wang J; Huang H; Lin J; Deng B; Liao Z; Yang Z; Ma Y; Tang H; Van Deynze A; Ming R Genome Biol; 2022 Mar; 23(1):75. PubMed ID: 35255946 [TBL] [Abstract][Full Text] [Related]
7. Mapping of the genes for dioecism and monoecism in Spinacia oleracea L.: evidence that both genes are closely linked. Onodera Y; Yonaha I; Masumo H; Tanaka A; Niikura S; Yamazaki S; Mikami T Plant Cell Rep; 2011 Jun; 30(6):965-71. PubMed ID: 21301852 [TBL] [Abstract][Full Text] [Related]
8. Chromosome level high-density integrated genetic maps improve the Pyrus bretschneideri 'DangshanSuli' v1.0 genome. Xue H; Wang S; Yao JL; Deng CH; Wang L; Su Y; Zhang H; Zhou H; Sun M; Li X; Yang J BMC Genomics; 2018 Nov; 19(1):833. PubMed ID: 30463521 [TBL] [Abstract][Full Text] [Related]
9. Molecular evidence for recent divergence of X- and Y-linked gene pairs in Spinacia oleracea L. Okazaki Y; Takahata S; Hirakawa H; Suzuki Y; Onodera Y PLoS One; 2019; 14(4):e0214949. PubMed ID: 30964889 [TBL] [Abstract][Full Text] [Related]
10. A gene-rich linkage map in the dioecious species Actinidia chinensis (kiwifruit) reveals putative X/Y sex-determining chromosomes. Fraser LG; Tsang GK; Datson PM; De Silva HN; Harvey CF; Gill GP; Crowhurst RN; McNeilage MA BMC Genomics; 2009 Mar; 10():102. PubMed ID: 19284545 [TBL] [Abstract][Full Text] [Related]
11. Construction of High Density Sweet Cherry (Prunus avium L.) Linkage Maps Using Microsatellite Markers and SNPs Detected by Genotyping-by-Sequencing (GBS). Guajardo V; Solís S; Sagredo B; Gainza F; Muñoz C; Gasic K; Hinrichsen P PLoS One; 2015; 10(5):e0127750. PubMed ID: 26011256 [TBL] [Abstract][Full Text] [Related]
12. High-density interspecific genetic maps of kiwifruit and the identification of sex-specific markers. Zhang Q; Liu C; Liu Y; VanBuren R; Yao X; Zhong C; Huang H DNA Res; 2015 Oct; 22(5):367-75. PubMed ID: 26370666 [TBL] [Abstract][Full Text] [Related]
13. Development of an X-specific marker and identification of YY individuals in spinach. Wadlington WH; Ming R Theor Appl Genet; 2018 Sep; 131(9):1987-1994. PubMed ID: 29971471 [TBL] [Abstract][Full Text] [Related]
14. A high-density transcript linkage map with 1,845 expressed genes positioned by microarray-based Single Feature Polymorphisms (SFP) in Eucalyptus. Neves LG; Mc Mamani E; Alfenas AC; Kirst M; Grattapaglia D BMC Genomics; 2011 Apr; 12():189. PubMed ID: 21492453 [TBL] [Abstract][Full Text] [Related]
15. Fine mapping and molecular marker development of the Fs gene controlling fruit spines in spinach (Spinacia oleracea L.). Liu Z; Lu T; Feng C; Zhang H; Xu Z; Correll JC; Qian W Theor Appl Genet; 2021 May; 134(5):1319-1328. PubMed ID: 33515081 [TBL] [Abstract][Full Text] [Related]
16. A spinach genome assembly with remarkable completeness, and its use for rapid identification of candidate genes for agronomic traits. Hirakawa H; Toyoda A; Itoh T; Suzuki Y; Nagano AJ; Sugiyama S; Onodera Y DNA Res; 2021 Jun; 28(3):. PubMed ID: 34142133 [TBL] [Abstract][Full Text] [Related]
17. Exploiting genotyping by sequencing to characterize the genomic structure of the American cranberry through high-density linkage mapping. Covarrubias-Pazaran G; Diaz-Garcia L; Schlautman B; Deutsch J; Salazar W; Hernandez-Ochoa M; Grygleski E; Steffan S; Iorizzo M; Polashock J; Vorsa N; Zalapa J BMC Genomics; 2016 Jun; 17():451. PubMed ID: 27295982 [TBL] [Abstract][Full Text] [Related]
18. Molecular evidence that the genes for dioecism and monoecism in Spinacia oleracea L. are located at different loci in a chromosomal region. Yamamoto K; Oda Y; Haseda A; Fujito S; Mikami T; Onodera Y Heredity (Edinb); 2014 Mar; 112(3):317-24. PubMed ID: 24169648 [TBL] [Abstract][Full Text] [Related]
19. Construction of a high-density DArTseq SNP-based genetic map and identification of genomic regions with segregation distortion in a genetic population derived from a cross between feral and cultivated-type watermelon. Ren R; Ray R; Li P; Xu J; Zhang M; Liu G; Yao X; Kilian A; Yang X Mol Genet Genomics; 2015 Aug; 290(4):1457-70. PubMed ID: 25702268 [TBL] [Abstract][Full Text] [Related]
20. Improving Nelumbo nucifera genome assemblies using high-resolution genetic maps and BioNano genome mapping reveals ancient chromosome rearrangements. Gui S; Peng J; Wang X; Wu Z; Cao R; Salse J; Zhang H; Zhu Z; Xia Q; Quan Z; Shu L; Ke W; Ding Y Plant J; 2018 May; 94(4):721-734. PubMed ID: 29575237 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]