BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 32955638)

  • 1. Comparison of Galdieria growth and photosynthetic activity in different culture systems.
    Carbone DA; Olivieri G; Pollio A; Melkonian M
    AMB Express; 2020 Sep; 10(1):170. PubMed ID: 32955638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomass and phycobiliprotein production of Galdieria sulphuraria, immobilized on a twin-layer porous substrate photobioreactor.
    Carbone DA; Olivieri G; Pollio A; Melkonian M
    Appl Microbiol Biotechnol; 2020 Apr; 104(7):3109-3119. PubMed ID: 32060692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Floridoside production by the red microalga Galdieria sulphuraria under different conditions of growth and osmotic stress.
    Martinez-Garcia M; van der Maarel MJEC
    AMB Express; 2016 Dec; 6(1):71. PubMed ID: 27620735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cultivation of Acidophilic Algae
    Hirooka S; Miyagishima SY
    Front Microbiol; 2016; 7():2022. PubMed ID: 28066348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of sugars in wastewater from food production through heterotrophic growth of
    Scherhag P; Ackermann JU
    Eng Life Sci; 2021 Mar; 21(3-4):233-241. PubMed ID: 33716621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mixotrophic growth of the extremophile Galdieria sulphuraria reveals the flexibility of its carbon assimilation metabolism.
    Curien G; Lyska D; Guglielmino E; Westhoff P; Janetzko J; Tardif M; Hallopeau C; Brugière S; Dal Bo D; Decelle J; Gallet B; Falconet D; Carone M; Remacle C; Ferro M; Weber APM; Finazzi G
    New Phytol; 2021 Jul; 231(1):326-338. PubMed ID: 33764540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microalgae as human food: chemical and nutritional characteristics of the thermo-acidophilic microalga Galdieria sulphuraria.
    Graziani G; Schiavo S; Nicolai MA; Buono S; Fogliano V; Pinto G; Pollio A
    Food Funct; 2013 Jan; 4(1):144-52. PubMed ID: 23104098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical composition and in vitro digestibility of Galdieria sulphuraria grown on spent cherry-brine liquid.
    Massa M; Buono S; Langellotti AL; Martello A; Russo GL; Troise DA; Sacchi R; Vitaglione P; Fogliano V
    N Biotechnol; 2019 Nov; 53():9-15. PubMed ID: 31195159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterotrophic high-cell-density fed-batch and continuous-flow cultures of Galdieria sulphuraria and production of phycocyanin.
    Graverholt OS; Eriksen NT
    Appl Microbiol Biotechnol; 2007 Nov; 77(1):69-75. PubMed ID: 17786429
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Palmieri M; Iovinella M; Davis SJ; di Cicco MR; Lubritto C; Race M; Papa S; Fabbricino M; Ciniglia C
    Microorganisms; 2022 Oct; 10(11):. PubMed ID: 36363730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel paradigm for the high-efficient production of phycocyanin from Galdieria sulphuraria.
    Wan M; Wang Z; Zhang Z; Wang J; Li S; Yu A; Li Y
    Bioresour Technol; 2016 Oct; 218():272-8. PubMed ID: 27372006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bio-removal of rare earth elements from hazardous industrial waste of CFL bulbs by the extremophile red alga
    Singh A; Čížková M; Náhlík V; Mezricky D; Schild D; Rucki M; Vítová M
    Front Microbiol; 2023; 14():1130848. PubMed ID: 36860487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Untargeted Metabolomics Unveil Changes in Autotrophic and Mixotrophic
    Liu L; Sanchez-Arcos C; Pohnert G; Wei D
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33513853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovery of rare earth elements from the sulfothermophilic red alga Galdieria sulphuraria using aqueous acid.
    Minoda A; Sawada H; Suzuki S; Miyashita S; Inagaki K; Yamamoto T; Tsuzuki M
    Appl Microbiol Biotechnol; 2015 Feb; 99(3):1513-9. PubMed ID: 25283836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Profiling of lipid and glycogen accumulations under different growth conditions in the sulfothermophilic red alga Galdieria sulphuraria.
    Sakurai T; Aoki M; Ju X; Ueda T; Nakamura Y; Fujiwara S; Umemura T; Tsuzuki M; Minoda A
    Bioresour Technol; 2016 Jan; 200():861-6. PubMed ID: 26595665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterotrophic high cell-density fed-batch cultures of the phycocyanin-producing red alga Galdieria sulphuraria.
    Schmidt RA; Wiebe MG; Eriksen NT
    Biotechnol Bioeng; 2005 Apr; 90(1):77-84. PubMed ID: 15723314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the highly branched glycogen from the thermoacidophilic red microalga Galdieria sulphuraria and comparison with other glycogens.
    Martinez-Garcia M; Stuart MC; van der Maarel MJ
    Int J Biol Macromol; 2016 Aug; 89():12-8. PubMed ID: 27107958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth under Different Trophic Regimes and Synchronization of the Red Microalga
    Náhlík V; Zachleder V; Čížková M; Bišová K; Singh A; Mezricky D; Řezanka T; Vítová M
    Biomolecules; 2021 Jun; 11(7):. PubMed ID: 34202768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth and biomass productivity of Scenedesmus vacuolatus on a twin layer system and a comparison with other types of cultivations.
    Carbone DA; Olivieri G; Pollio A; Gabriele ; Melkonian M
    Appl Microbiol Biotechnol; 2017 Dec; 101(23-24):8321-8329. PubMed ID: 29032470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterotrophic cultivation of Galdieria sulphuraria under non-sterile conditions in digestate and hydrolyzed straw.
    Pleissner D; Lindner AV; Händel N
    Bioresour Technol; 2021 Oct; 337():125477. PubMed ID: 34320757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.