These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 32955669)
41. Probabilistic self-learning framework for low-dose CT denoising. Bai T; Wang B; Nguyen D; Jiang S Med Phys; 2021 May; 48(5):2258-2270. PubMed ID: 33621348 [TBL] [Abstract][Full Text] [Related]
42. Noise2Void: unsupervised denoising of PET images. Song TA; Yang F; Dutta J Phys Med Biol; 2021 Nov; 66(21):. PubMed ID: 34663767 [No Abstract] [Full Text] [Related]
43. Evaluation of MR anatomically-guided PET reconstruction using a convolutional neural network in PSMA patients. Farag A; Huang J; Kohan A; Mirshahvalad SA; Basso Dias A; Fenchel M; Metser U; Veit-Haibach P Phys Med Biol; 2023 Sep; 68(18):. PubMed ID: 37625418 [No Abstract] [Full Text] [Related]
44. Self-trained deep convolutional neural network for noise reduction in CT. Zhou Z; Inoue A; McCollough CH; Yu L J Med Imaging (Bellingham); 2023 Jul; 10(4):044008. PubMed ID: 37636895 [TBL] [Abstract][Full Text] [Related]
45. Enhancing the signal-to-noise ratio and generating contrast for cryo-EM images with convolutional neural networks. Palovcak E; Asarnow D; Campbell MG; Yu Z; Cheng Y IUCrJ; 2020 Nov; 7(Pt 6):1142-1150. PubMed ID: 33209325 [TBL] [Abstract][Full Text] [Related]
46. Model-based deep CNN-regularized reconstruction for digital breast tomosynthesis with a task-based CNN image assessment approach. Gao M; Fessler JA; Chan HP Phys Med Biol; 2023 Dec; 68(24):. PubMed ID: 37988758 [No Abstract] [Full Text] [Related]
47. The Impact of Artificial Intelligence CNN Based Denoising on FDG PET Radiomics. Jaudet C; Weyts K; Lechervy A; Batalla A; Bardet S; Corroyer-Dulmont A Front Oncol; 2021; 11():692973. PubMed ID: 34504782 [TBL] [Abstract][Full Text] [Related]
49. Generation of PET Attenuation Map for Whole-Body Time-of-Flight Hwang D; Kang SK; Kim KY; Seo S; Paeng JC; Lee DS; Lee JS J Nucl Med; 2019 Aug; 60(8):1183-1189. PubMed ID: 30683763 [TBL] [Abstract][Full Text] [Related]
50. Augmentation of CBCT Reconstructed From Under-Sampled Projections Using Deep Learning. Jiang Z; Chen Y; Zhang Y; Ge Y; Yin FF; Ren L IEEE Trans Med Imaging; 2019 Nov; 38(11):2705-2715. PubMed ID: 31021791 [TBL] [Abstract][Full Text] [Related]
51. A CNN-based denoising method trained with images acquired with electron density phantoms for thin-sliced coronary artery calcium scans. Yang CC; Hou KY J Appl Clin Med Phys; 2024 Mar; 25(3):e14287. PubMed ID: 38346094 [TBL] [Abstract][Full Text] [Related]
52. Non-local means denoising of dynamic PET images. Dutta J; Leahy RM; Li Q PLoS One; 2013; 8(12):e81390. PubMed ID: 24339921 [TBL] [Abstract][Full Text] [Related]
53. 3D Convolutional Neural Network-Based Denoising of Low-Count Whole-Body de Vries BM; Golla SSV; Zwezerijnen GJC; Hoekstra OS; Jauw YWS; Huisman MC; van Dongen GAMS; Menke-van der Houven van Oordt WC; Zijlstra-Baalbergen JJM; Mesotten L; Boellaard R; Yaqub M Diagnostics (Basel); 2022 Feb; 12(3):. PubMed ID: 35328149 [TBL] [Abstract][Full Text] [Related]
54. Image Denoising of Low-Dose PET Mouse Scans with Deep Learning: Validation Study for Preclinical Imaging Applicability. Muller FM; Vervenne B; Maebe J; Blankemeyer E; Sellmyer MA; Zhou R; Karp JS; Vanhove C; Vandenberghe S Mol Imaging Biol; 2024 Feb; 26(1):101-113. PubMed ID: 37875748 [TBL] [Abstract][Full Text] [Related]
55. Convolutional neural networks for automatic image quality control and EARL compliance of PET images. Pfaehler E; Euba D; Rinscheid A; Hoekstra OS; Zijlstra J; van Sluis J; Brouwers AH; Lapa C; Boellaard R EJNMMI Phys; 2022 Aug; 9(1):53. PubMed ID: 35943622 [TBL] [Abstract][Full Text] [Related]
56. Investigation of small lung lesion detection for lung cancer screening in low dose FDG PET imaging by deep neural networks. Guo H; Wu J; Xie Z; Tham IWK; Zhou L; Yan J Front Public Health; 2022; 10():1047714. PubMed ID: 36438275 [TBL] [Abstract][Full Text] [Related]
57. DEMIST: A Deep-Learning-Based Detection-Task-Specific Denoising Approach for Myocardial Perfusion SPECT. Rahman MA; Yu Z; Laforest R; Abbey CK; Siegel BA; Jha AK IEEE Trans Radiat Plasma Med Sci; 2024 Apr; 8(4):439-450. PubMed ID: 38766558 [TBL] [Abstract][Full Text] [Related]
58. Lung tumor segmentation in 4D CT images using motion convolutional neural networks. Momin S; Lei Y; Tian Z; Wang T; Roper J; Kesarwala AH; Higgins K; Bradley JD; Liu T; Yang X Med Phys; 2021 Nov; 48(11):7141-7153. PubMed ID: 34469001 [TBL] [Abstract][Full Text] [Related]
59. Introducing Swish and Parallelized Blind Removal Improves the Performance of a Convolutional Neural Network in Denoising MR Images. Sugai T; Takano K; Ouchi S; Ito S Magn Reson Med Sci; 2021 Dec; 20(4):410-424. PubMed ID: 33583867 [TBL] [Abstract][Full Text] [Related]
60. Performance Assessment Framework for Neural Network Denoising. Li J; Wang W; Tivnan M; Stayman JW; Gang GJ Proc SPIE Int Soc Opt Eng; 2022; 12031():. PubMed ID: 35585939 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]