BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 3295578)

  • 1. Antinociceptive action of cholecystokinin octapeptide (CCK 8) and related peptides in rats and mice: effects of naloxone and peptidase inhibitors.
    Hill RG; Hughes J; Pittaway KM
    Neuropharmacology; 1987 Apr; 26(4):289-300. PubMed ID: 3295578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antinociceptive profile of sulfated CCK-8. Comparison with CCK-4, unsulfated CCK-8 and other neuropeptides.
    Barbaz BS; Autry WL; Ambrose FG; Hall NR; Liebman JM
    Neuropharmacology; 1986 Aug; 25(8):823-9. PubMed ID: 3774112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduction of food intake by central administration of cholecystokinin octapeptide in the rat is dependent upon inhibition of brain peptidases.
    Griesbacher T; Leighton GE; Hill RG; Hughes J
    Br J Pharmacol; 1989 Jan; 96(1):236-42. PubMed ID: 2647203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CCK 8 analgesia and hyperalgesia after intrathecal administration in the rat: comparison with CCK-related peptides.
    Pittaway KM; Rodriguez RE; Hughes J; Hill RG
    Neuropeptides; 1987 Jul; 10(1):87-108. PubMed ID: 3670569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Passive avoidance deficit following intracerebroventricular administration of cholecystokinin tetrapeptide amide in rats.
    Katsuura G; Itoh S
    Peptides; 1986; 7(5):809-14. PubMed ID: 3797342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cholecystokinin-A but not cholecystokinin-B receptor stimulation induces endogenous opioid-dependent antinociceptive effects in the hot plate test in mice.
    Derrien M; Noble F; Maldonado R; Roques BP
    Neurosci Lett; 1993 Oct; 160(2):193-6. PubMed ID: 8247353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of enkephalin metabolism by, and antinociceptive activity of, bestatin, an aminopeptidase inhibitor.
    Chaillet P; Marçais-Collado H; Costentin J; Yi CC; De La Baume S; Schwartz JC
    Eur J Pharmacol; 1983 Jan; 86(3-4):329-36. PubMed ID: 6572590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of cholecystokinin-related peptides on retention of passive avoidance behaviour.
    Fekete M; Penke B; Telegdy G
    Acta Physiol Acad Sci Hung; 1982; 60(4):237-42. PubMed ID: 6314742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thiorphan potentiation of stress-induced analgesia in the mouse.
    Greenberg R; O'Keefe EH
    Life Sci; 1982 Sep 20-27; 31(12-13):1185-8. PubMed ID: 6755120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supraspinal antinociception produced by [D-Met2]-FMRFamide in mice.
    Raffa RB; Connelly CD
    Neuropeptides; 1992 Jul; 22(3):195-203. PubMed ID: 1331846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potentiation of stress-induced analgesia (SIA) by thiorphan and its block by naloxone.
    Chipkin RE; Latranyi MB; Iorio LC
    Life Sci; 1982 Sep 20-27; 31(12-13):1189-92. PubMed ID: 6958954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of thiorphan on the antinociceptive actions of intrathecal [D-Ala2,Met5] enkephalin.
    Yaksh TL; Harty GJ
    Eur J Pharmacol; 1982 Apr; 79(3-4):293-300. PubMed ID: 7047177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specificity of nucleus accumbens to activities related to cholecystokinins in rats.
    Katsuura G; Itoh S; Hsiao S
    Peptides; 1985; 6(1):91-6. PubMed ID: 3991366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potentiation of phencyclidine-induced stereotyped behaviors in rats by thiorphan and bestatin.
    Hiramatsu M; Nabeshima T; Fukaya H; Furukawa H; Kameyama T
    Eur J Pharmacol; 1986 Jan; 120(1):69-74. PubMed ID: 3456306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potentiation by thiorphan and bestatin of the naloxone-insensitive analgesic effects of neurotensin and neuromedin n.
    Coquerel A; Dubuc I; Kitaegi P; Costentin J
    Neurochem Int; 1988; 12(3):361-6. PubMed ID: 20501239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in turnover of cerebral monoamines following inhibition of enkephalin metabolism by thiorphan and bestatin.
    Llorens-Cortes C; Schwartz JC
    Eur J Pharmacol; 1984 Sep; 104(3-4):369-74. PubMed ID: 6594244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of opioid antinociception by CCK at the supraspinal level: evidence of regulatory mechanisms between CCK and enkephalin systems in the control of pain.
    Noble F; Derrien M; Roques BP
    Br J Pharmacol; 1993 Aug; 109(4):1064-70. PubMed ID: 8401918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between enkephalinase inhibition of thiorphan in vivo and its analgesic activity.
    Hachisu M; Takahashi H; Hiranuma T; Shibazaki Y; Murata S
    J Pharmacobiodyn; 1985 Sep; 8(9):701-10. PubMed ID: 3910797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of cholecystokinin octapeptide and ceruletide on release of acetylcholine from cerebral cortex of the rat in vivo.
    Magnani M; Mantovani P; Pepeu G
    Neuropharmacology; 1984 Nov; 23(11):1305-9. PubMed ID: 6098846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered responding to cholecystokinins and dopaminergic agonists following 6-hydroxydopamine treatment in rats.
    Hsiao S; Katsuura G; Itoh S
    Behav Neurosci; 1985 Oct; 99(5):853-60. PubMed ID: 3939625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.