These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 32955894)

  • 1. Characterization of Differential Tissue Abundance of Major Non-CYP Enzymes in Human.
    Basit A; Neradugomma NK; Wolford C; Fan PW; Murray B; Takahashi RH; Khojasteh SC; Smith BJ; Heyward S; Totah RA; Kelly EJ; Prasad B
    Mol Pharm; 2020 Nov; 17(11):4114-4124. PubMed ID: 32955894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regional Proteomic Quantification of Clinically Relevant Non-Cytochrome P450 Enzymes along the Human Small Intestine.
    Zhang H; Wolford C; Basit A; Li AP; Fan PW; Murray BP; Takahashi RH; Khojasteh SC; Smith BJ; Thummel KE; Prasad B
    Drug Metab Dispos; 2020 Jul; 48(7):528-536. PubMed ID: 32350063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential Tissue Abundance of Membrane-Bound Drug Metabolizing Enzymes and Transporter Proteins by Global Proteomics.
    Singh DK; Ahire D; Davydov DR; Prasad B
    Drug Metab Dispos; 2024 Oct; 52(11):1152-1160. PubMed ID: 38641346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PBPK Modelling for Drugs Cleared by Non-CYP Enzymes: State-of-the-Art and Future Perspectives.
    Ozbey AC; Fowler S; Leys K; Annaert P; Umehara K; Parrott N
    Drug Metab Dispos; 2023 Oct; ():. PubMed ID: 37879848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the Ontogeny of Hepatic UDP-Glucuronosyltransferase Enzymes Based on Glucuronidation Activity Measured in Human Liver Microsomes.
    Badée J; Qiu N; Collier AC; Takahashi RH; Forrest WF; Parrott N; Schmidt S; Fowler S
    J Clin Pharmacol; 2019 Sep; 59 Suppl 1():S42-S55. PubMed ID: 31502688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase II metabolism of hesperetin by individual UDP-glucuronosyltransferases and sulfotransferases and rat and human tissue samples.
    Brand W; Boersma MG; Bik H; Hoek-van den Hil EF; Vervoort J; Barron D; Meinl W; Glatt H; Williamson G; van Bladeren PJ; Rietjens IM
    Drug Metab Dispos; 2010 Apr; 38(4):617-25. PubMed ID: 20056724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of Tissue Abundance of Non-Cytochrome P450 Drug-Metabolizing Enzymes by Quantitative Proteomics between Humans and Laboratory Animal Species.
    Basit A; Fan PW; Khojasteh SC; Murray BP; Smith BJ; Heyward S; Prasad B
    Drug Metab Dispos; 2022 Mar; 50(3):197-203. PubMed ID: 34969659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct comparison of UDP-glucuronosyltransferase and cytochrome P450 activities in human liver microsomes, plated and suspended primary human hepatocytes from five liver donors.
    den Braver-Sewradj SP; den Braver MW; Baze A; Decorde J; Fonsi M; Bachellier P; Vermeulen NPE; Commandeur JNM; Richert L; Vos JC
    Eur J Pharm Sci; 2017 Nov; 109():96-110. PubMed ID: 28778465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mass spectrometry-based targeted proteomics method for the quantification of clinically relevant drug metabolizing enzymes in human specimens.
    Wenzel C; Drozdzik M; Oswald S
    J Chromatogr B Analyt Technol Biomed Life Sci; 2021 Aug; 1180():122891. PubMed ID: 34390906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative ADME proteomics - CYP and UGT enzymes in the Beagle dog liver and intestine.
    Heikkinen AT; Friedlein A; Matondo M; Hatley OJ; Petsalo A; Juvonen R; Galetin A; Rostami-Hodjegan A; Aebersold R; Lamerz J; Dunkley T; Cutler P; Parrott N
    Pharm Res; 2015 Jan; 32(1):74-90. PubMed ID: 25033762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative Atlas of Cytochrome P450, UDP-Glucuronosyltransferase, and Transporter Proteins in Jejunum of Morbidly Obese Subjects.
    Miyauchi E; Tachikawa M; Declèves X; Uchida Y; Bouillot JL; Poitou C; Oppert JM; Mouly S; Bergmann JF; Terasaki T; Scherrmann JM; Lloret-Linares C
    Mol Pharm; 2016 Aug; 13(8):2631-40. PubMed ID: 27347605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Profiles and Gender-Specifics of UDP-Glucuronosyltransferases and Sulfotransferases Expressions in the Major Metabolic Organs of Wild-Type and Efflux Transporter Knockout FVB Mice.
    Chen J; Zheng H; Zeng S; Xie C; Li X; Yan T; Gong X; Lu L; Qi X; Wang Y; Hu M; Zhu L; Liu Z
    Mol Pharm; 2017 Sep; 14(9):2967-2976. PubMed ID: 28661152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative Intra-Subject Analysis of Gene Expression and Protein Abundance of Major and Minor Drug Metabolizing Enzymes in Healthy Human Jejunum and Liver.
    Wenzel C; Lapczuk-Romanska J; Malinowski D; Ostrowski M; Drozdzik M; Oswald S
    Clin Pharmacol Ther; 2024 Feb; 115(2):221-230. PubMed ID: 37739780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Challenges and Opportunities with Non-CYP Enzymes Aldehyde Oxidase, Carboxylesterase, and UDP-Glucuronosyltransferase: Focus on Reaction Phenotyping and Prediction of Human Clearance.
    Argikar UA; Potter PM; Hutzler JM; Marathe PH
    AAPS J; 2016 Nov; 18(6):1391-1405. PubMed ID: 27495117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Renal drug metabolism in humans: the potential for drug-endobiotic interactions involving cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT).
    Knights KM; Rowland A; Miners JO
    Br J Clin Pharmacol; 2013 Oct; 76(4):587-602. PubMed ID: 23362865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Absolute protein quantification of clinically relevant cytochrome P450 enzymes and UDP-glucuronosyltransferases by mass spectrometry-based targeted proteomics.
    Gröer C; Busch D; Patrzyk M; Beyer K; Busemann A; Heidecke CD; Drozdzik M; Siegmund W; Oswald S
    J Pharm Biomed Anal; 2014 Nov; 100():393-401. PubMed ID: 25218440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of Catalposide Metabolites in Human Liver and Intestinal Preparations and Characterization of the Relevant Sulfotransferase, UDP-glucuronosyltransferase, and Carboxylesterase Enzymes.
    Hwang DK; Kim JH; Shin Y; Choi WG; Kim S; Cho YY; Lee JY; Kang HC; Lee HS
    Pharmaceutics; 2019 Jul; 11(7):. PubMed ID: 31336576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Hepatic UDP-Glucuronosyltransferase Enzyme Abundance-Activity Correlations and Population Variability Using a Proteomics Approach and Comparison with Cytochrome P450 Enzymes.
    Takahashi RH; Forrest WF; Smith AD; Badee J; Qiu N; Schmidt S; Collier AC; Parrott N; Fowler S
    Drug Metab Dispos; 2021 Sep; 49(9):760-769. PubMed ID: 34187837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Troglitazone glucuronidation in human liver and intestine microsomes: high catalytic activity of UGT1A8 and UGT1A10.
    Watanabe Y; Nakajima M; Yokoi T
    Drug Metab Dispos; 2002 Dec; 30(12):1462-9. PubMed ID: 12433820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Vitro Characterization of Ertugliflozin Metabolism by UDP-Glucuronosyltransferase and Cytochrome P450 Enzymes.
    Lapham K; Callegari E; Cianfrogna J; Lin J; Niosi M; Orozco CC; Sharma R; Goosen TC
    Drug Metab Dispos; 2020 Dec; 48(12):1350-1363. PubMed ID: 33020067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.