BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 32955901)

  • 1. How do arbidol and its analogs inhibit the SARS-CoV-2?
    Aktas A; Tuzun B; Taskin AH; Sayin K; Ataseven H
    Bratisl Lek Listy; 2020; 121(10):705-711. PubMed ID: 32955901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arbidol: A potential antiviral drug for the treatment of SARS-CoV-2 by blocking trimerization of the spike glycoprotein.
    Vankadari N
    Int J Antimicrob Agents; 2020 Aug; 56(2):105998. PubMed ID: 32360231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SARS-CoV-2 Evolutionary Adaptation toward Host Entry and Recognition of Receptor O-Acetyl Sialylation in Virus-Host Interaction.
    Kim CH
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32604730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential of Arbidol for Post-exposure Prophylaxis of COVID-19 Transmission: A Preliminary Report of a Retrospective Cohort Study.
    Zhang JN; Wang WJ; Peng B; Peng W; Zhang YS; Wang YL; Wan Y; Chang J; Mao L; Miao XP; Li YN; Zhou YF; Hu B
    Curr Med Sci; 2020 Jun; 40(3):480-485. PubMed ID: 32474860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of Potent Membrane Fusion Inhibitors against SARS-CoV-2, an Emerging Coronavirus with High Fusogenic Activity.
    Zhu Y; Yu D; Yan H; Chong H; He Y
    J Virol; 2020 Jul; 94(14):. PubMed ID: 32376627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a repurposed drug as an inhibitor of Spike protein of human coronavirus SARS-CoV-2 by computational methods.
    Unni S; Aouti S; Thiyagarajan S; Padmanabhan B
    J Biosci; 2020; 45(1):. PubMed ID: 33184246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimized Pseudotyping Conditions for the SARS-COV-2 Spike Glycoprotein.
    Johnson MC; Lyddon TD; Suarez R; Salcedo B; LePique M; Graham M; Ricana C; Robinson C; Ritter DG
    J Virol; 2020 Oct; 94(21):. PubMed ID: 32788194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nicotinic Cholinergic System and COVID-19: In Silico Identification of an Interaction between SARS-CoV-2 and Nicotinic Receptors with Potential Therapeutic Targeting Implications.
    Farsalinos K; Eliopoulos E; Leonidas DD; Papadopoulos GE; Tzartos S; Poulas K
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32823591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential chimeric peptides to block the SARS-CoV-2 spike receptor-binding domain.
    Barh D; Tiwari S; Silva Andrade B; Giovanetti M; Almeida Costa E; Kumavath R; Ghosh P; Góes-Neto A; Carlos Junior Alcantara L; Azevedo V
    F1000Res; 2020; 9():576. PubMed ID: 32802318
    [No Abstract]   [Full Text] [Related]  

  • 10. Comparison of Severe Acute Respiratory Syndrome Coronavirus 2 Spike Protein Binding to ACE2 Receptors from Human, Pets, Farm Animals, and Putative Intermediate Hosts.
    Zhai X; Sun J; Yan Z; Zhang J; Zhao J; Zhao Z; Gao Q; He WT; Veit M; Su S
    J Virol; 2020 Jul; 94(15):. PubMed ID: 32404529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular docking study of potential phytochemicals and their effects on the complex of SARS-CoV2 spike protein and human ACE2.
    Basu A; Sarkar A; Maulik U
    Sci Rep; 2020 Oct; 10(1):17699. PubMed ID: 33077836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coevolution, Dynamics and Allostery Conspire in Shaping Cooperative Binding and Signal Transmission of the SARS-CoV-2 Spike Protein with Human Angiotensin-Converting Enzyme 2.
    Verkhivker G
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33158276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repurposing of FDA-Approved Toremifene to Treat COVID-19 by Blocking the Spike Glycoprotein and NSP14 of SARS-CoV-2.
    Martin WR; Cheng F
    J Proteome Res; 2020 Nov; 19(11):4670-4677. PubMed ID: 32907334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential pathogenesis of severe acute respiratory syndrome coronavirus 2.
    Wu T; Zhang H; Hu E; Ma J
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2020 May; 45(5):591-597. PubMed ID: 32879112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-silico design of a potential inhibitor of SARS-CoV-2 S protein.
    Jaiswal G; Kumar V
    PLoS One; 2020; 15(10):e0240004. PubMed ID: 33002032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conserved High Free Energy Sites in Human Coronavirus Spike Glycoprotein Backbones.
    Penner RC
    J Comput Biol; 2020 Nov; 27(11):1622-1630. PubMed ID: 32401043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Static all-atom energetic mappings of the SARS-Cov-2 spike protein and dynamic stability analysis of "Up" versus "Down" protomer states.
    Peters MH; Bastidas O; Kokron DS; Henze CE
    PLoS One; 2020; 15(11):e0241168. PubMed ID: 33170884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential of Flavonoid-Inspired Phytomedicines against COVID-19.
    Ngwa W; Kumar R; Thompson D; Lyerly W; Moore R; Reid TE; Lowe H; Toyang N
    Molecules; 2020 Jun; 25(11):. PubMed ID: 32545268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variations in SARS-CoV-2 Spike Protein Cell Epitopes and Glycosylation Profiles During Global Transmission Course of COVID-19.
    Xu W; Wang M; Yu D; Zhang X
    Front Immunol; 2020; 11():565278. PubMed ID: 33013929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Simulations and Network Modeling Reveal an Allosteric Signaling in the SARS-CoV-2 Spike Proteins.
    Verkhivker GM
    J Proteome Res; 2020 Nov; 19(11):4587-4608. PubMed ID: 33006900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.