BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 32956350)

  • 1. Efficient consideration of coordinated water molecules improves computational protein-protein and protein-ligand docking discrimination.
    Pavlovicz RE; Park H; DiMaio F
    PLoS Comput Biol; 2020 Sep; 16(9):e1008103. PubMed ID: 32956350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FDS: flexible ligand and receptor docking with a continuum solvent model and soft-core energy function.
    Taylor RD; Jewsbury PJ; Essex JW
    J Comput Chem; 2003 Oct; 24(13):1637-56. PubMed ID: 12926007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporating replacement free energy of binding-site waters in molecular docking.
    Sun H; Zhao L; Peng S; Huang N
    Proteins; 2014 Sep; 82(9):1765-76. PubMed ID: 24549784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular docking with ligand attached water molecules.
    Lie MA; Thomsen R; Pedersen CN; Schiøtt B; Christensen MH
    J Chem Inf Model; 2011 Apr; 51(4):909-17. PubMed ID: 21452852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards ligand docking including explicit interface water molecules.
    Lemmon G; Meiler J
    PLoS One; 2013; 8(6):e67536. PubMed ID: 23840735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-Body Interactions in Molecular Docking Program Devised with Key Water Molecules in Protein Binding Sites.
    Xiao W; Wang D; Shen Z; Li S; Li H
    Molecules; 2018 Sep; 23(9):. PubMed ID: 30208655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A solvated ligand rotamer approach and its application in computational protein design.
    Huang X; Yang J; Zhu Y
    J Mol Model; 2013 Mar; 19(3):1355-67. PubMed ID: 23192355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic placement of structural water molecules for improved scoring of protein-ligand interactions.
    Huggins DJ; Tidor B
    Protein Eng Des Sel; 2011 Oct; 24(10):777-89. PubMed ID: 21771870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A "solvated rotamer" approach to modeling water-mediated hydrogen bonds at protein-protein interfaces.
    Jiang L; Kuhlman B; Kortemme T; Baker D
    Proteins; 2005 Mar; 58(4):893-904. PubMed ID: 15651050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A pose prediction approach based on ligand 3D shape similarity.
    Kumar A; Zhang KY
    J Comput Aided Mol Des; 2016 Jun; 30(6):457-69. PubMed ID: 27379501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PlaceWaters: Real-time, explicit interface water sampling during Rosetta ligand docking.
    Smith ST; Shub L; Meiler J
    PLoS One; 2022; 17(5):e0269072. PubMed ID: 35639743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GeauxDock: A novel approach for mixed-resolution ligand docking using a descriptor-based force field.
    Ding Y; Fang Y; Feinstein WP; Ramanujam J; Koppelman DM; Moreno J; Brylinski M; Jarrell M
    J Comput Chem; 2015 Oct; 36(27):2013-26. PubMed ID: 26250822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo replica-exchange based ensemble docking of protein conformations.
    Zhang Z; Ehmann U; Zacharias M
    Proteins; 2017 May; 85(5):924-937. PubMed ID: 28168752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PLHINT: A knowledge-driven computational approach based on the intermolecular H bond interactions at the protein-ligand interface from docking solutions.
    Kumar SP
    J Mol Graph Model; 2018 Jan; 79():194-212. PubMed ID: 29241118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Explicit treatment of water molecules in data-driven protein-protein docking: the solvated HADDOCKing approach.
    Kastritis PL; van Dijk AD; Bonvin AM
    Methods Mol Biol; 2012; 819():355-74. PubMed ID: 22183547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving protein-ligand docking with flexible interfacial water molecules using SWRosettaLigand.
    Li L; Xu W; Lü Q
    J Mol Model; 2015 Nov; 21(11):294. PubMed ID: 26515196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shape similarity guided pose prediction: lessons from D3R Grand Challenge 3.
    Kumar A; Zhang KYJ
    J Comput Aided Mol Des; 2019 Jan; 33(1):47-59. PubMed ID: 30084081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. WScore: A Flexible and Accurate Treatment of Explicit Water Molecules in Ligand-Receptor Docking.
    Murphy RB; Repasky MP; Greenwood JR; Tubert-Brohman I; Jerome S; Annabhimoju R; Boyles NA; Schmitz CD; Abel R; Farid R; Friesner RA
    J Med Chem; 2016 May; 59(9):4364-84. PubMed ID: 27054459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving ligand 3D shape similarity-based pose prediction with a continuum solvent model.
    Kumar A; Zhang KYJ
    J Comput Aided Mol Des; 2019 Dec; 33(12):1045-1055. PubMed ID: 31463704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational design of protein-small molecule interfaces.
    Allison B; Combs S; DeLuca S; Lemmon G; Mizoue L; Meiler J
    J Struct Biol; 2014 Feb; 185(2):193-202. PubMed ID: 23962892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.