These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 32956372)

  • 41. A multiple-channel and atrous convolution network for ultrasound image segmentation.
    Zhang L; Zhang J; Li Z; Song Y
    Med Phys; 2020 Dec; 47(12):6270-6285. PubMed ID: 33007105
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Optic Disc and Cup Segmentation in Retinal Images for Glaucoma Diagnosis by Locally Statistical Active Contour Model with Structure Prior.
    Zhou W; Yi Y; Gao Y; Dai J
    Comput Math Methods Med; 2019; 2019():8973287. PubMed ID: 31827591
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A Retrospective Comparison of Deep Learning to Manual Annotations for Optic Disc and Optic Cup Segmentation in Fundus Photographs.
    Fu H; Li F; Xu Y; Liao J; Xiong J; Shen J; Liu J; Zhang X;
    Transl Vis Sci Technol; 2020 Jun; 9(2):33. PubMed ID: 32832206
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mixed Maximum Loss Design for Optic Disc and Optic Cup Segmentation with Deep Learning from Imbalanced Samples.
    Xu YL; Lu S; Li HX; Li RR
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31614560
    [TBL] [Abstract][Full Text] [Related]  

  • 45. GC-Net: Global context network for medical image segmentation.
    Ni J; Wu J; Tong J; Chen Z; Zhao J
    Comput Methods Programs Biomed; 2020 Jul; 190():105121. PubMed ID: 31623863
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Graph convolutional network based optic disc and cup segmentation on fundus images.
    Tian Z; Zheng Y; Li X; Du S; Xu X
    Biomed Opt Express; 2020 Jun; 11(6):3043-3057. PubMed ID: 32637240
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Weak label based Bayesian U-Net for optic disc segmentation in fundus images.
    Xiong H; Liu S; Sharan RV; Coiera E; Berkovsky S
    Artif Intell Med; 2022 Apr; 126():102261. PubMed ID: 35346443
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Deeply supervised 3D fully convolutional networks with group dilated convolution for automatic MRI prostate segmentation.
    Wang B; Lei Y; Tian S; Wang T; Liu Y; Patel P; Jani AB; Mao H; Curran WJ; Liu T; Yang X
    Med Phys; 2019 Apr; 46(4):1707-1718. PubMed ID: 30702759
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation.
    Zilly J; Buhmann JM; Mahapatra D
    Comput Med Imaging Graph; 2017 Jan; 55():28-41. PubMed ID: 27590198
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Automatic Glaucoma Detection from Stereo Fundus Images.
    Ong EP; Cheng J; Wong DWK; Tay ELT; Teo HY; Grace Loo R; Yip LWL
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1540-1543. PubMed ID: 33018285
    [TBL] [Abstract][Full Text] [Related]  

  • 51. ADR-Net: Context extraction network based on M-Net for medical image segmentation.
    Ji L; Jiang X; Gao Y; Fang Z; Cai Q; Wei Z
    Med Phys; 2020 Sep; 47(9):4254-4264. PubMed ID: 32602963
    [TBL] [Abstract][Full Text] [Related]  

  • 52. N-Net: A novel dense fully convolutional neural network for thyroid nodule segmentation.
    Nie X; Zhou X; Tong T; Lin X; Wang L; Zheng H; Li J; Xue E; Chen S; Zheng M; Chen C; Du M
    Front Neurosci; 2022; 16():872601. PubMed ID: 36117632
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning.
    Bajwa MN; Malik MI; Siddiqui SA; Dengel A; Shafait F; Neumeier W; Ahmed S
    BMC Med Inform Decis Mak; 2019 Jul; 19(1):136. PubMed ID: 31315618
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fully connected network with multi-scale dilation convolution module in evaluating atrial septal defect based on MRI segmentation.
    Chen H; Yan S; Xie M; Ye Y; Ye Y; Zhu D; Su L; Huang J
    Comput Methods Programs Biomed; 2022 Mar; 215():106608. PubMed ID: 35063713
    [TBL] [Abstract][Full Text] [Related]  

  • 55. MHSU-Net: A more versatile neural network for medical image segmentation.
    Ma H; Zou Y; Liu PX
    Comput Methods Programs Biomed; 2021 Sep; 208():106230. PubMed ID: 34148011
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optic Disc Segmentation from Retinal Fundus Images via Deep Object Detection Networks.
    Sun X; Xu Y; Zhao W; You T; Liu J
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5954-5957. PubMed ID: 30441692
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identifying the Edges of the Optic Cup and the Optic Disc in Glaucoma Patients by Segmentation.
    Tadisetty S; Chodavarapu R; Jin R; Clements RJ; Yu M
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430580
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Robust optic disc and cup segmentation with deep learning for glaucoma detection.
    Yu S; Xiao D; Frost S; Kanagasingam Y
    Comput Med Imaging Graph; 2019 Jun; 74():61-71. PubMed ID: 31022592
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Optic cup and disc segmentation model based on linear attention and dual attention].
    Lan Z; Xie J; Guo Y; Zhang Z; Sun B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2023 Oct; 40(5):920-927. PubMed ID: 37879921
    [TBL] [Abstract][Full Text] [Related]  

  • 60. PyDiNet: Pyramid Dilated Network for medical image segmentation.
    Gridach M
    Neural Netw; 2021 Aug; 140():274-281. PubMed ID: 33839599
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.