BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 32956531)

  • 1. Design of Site-Specific Microwave Phased Array Hyperthermia Applicators Using 434 MHz Reduced Cavity-Backed Patch Antenna.
    Baskaran D; Arunachalam K
    Bioelectromagnetics; 2020 Dec; 41(8):630-648. PubMed ID: 32956531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and characterisation of miniaturised cavity-backed patch antenna for microwave hyperthermia.
    Chakaravarthi G; Arunachalam K
    Int J Hyperthermia; 2015; 31(7):737-48. PubMed ID: 26365603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of a patch antenna applicator for time reversal hyperthemia.
    Dobsícek Trefná H; Vrba J; Persson M
    Int J Hyperthermia; 2010; 26(2):185-97. PubMed ID: 20146572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and characterisation of a phased antenna array for intact breast hyperthermia.
    Curto S; Garcia-Miquel A; Suh M; Vidal N; Lopez-Villegas JM; Prakash P
    Int J Hyperthermia; 2018 May; 34(3):250-260. PubMed ID: 28605946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Silico Study on Tumor-Size-Dependent Thermal Profiles inside an Anthropomorphic Female Breast Phantom Subjected to Multi-Dipole Antenna Array.
    Gas P; Miaskowski A; Subramanian M
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33202658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation guided design of the MRcollar: a MR compatible applicator for deep heating in the head and neck region.
    Drizdal T; Sumser K; Bellizzi GG; Fiser O; Vrba J; Rhoon GCV; Yeo DTB; Margarethus M Paulides
    Int J Hyperthermia; 2021; 38(1):382-392. PubMed ID: 33682594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SAR distributions in interstitial microwave antenna arrays with a single dipole displacement.
    Clibbon KL; McCowen A; Hand JW
    IEEE Trans Biomed Eng; 1993 Sep; 40(9):925-32. PubMed ID: 8288284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a compact antenna with flared groundplane for a wearable breast hyperthermia system.
    Curto S; Prakash P
    Int J Hyperthermia; 2015; 31(7):726-36. PubMed ID: 26368277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A printed Yagi-Uda antenna for application in magnetic resonance thermometry guided microwave hyperthermia applicators.
    Paulides MM; Mestrom RM; Salim G; Adela BB; Numan WC; Drizdal T; Yeo DT; Smolders AB
    Phys Med Biol; 2017 Mar; 62(5):1831-1847. PubMed ID: 28052042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical characterization of dual concentric conductor microwave applicators for hyperthermia at 433 MHz.
    Rossetto F; Stauffer PR
    Int J Hyperthermia; 2001; 17(3):258-70. PubMed ID: 11347730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of insertion depth on the theoretical SAR patterns of 915 MHz dipole antenna arrays for hyperthermia.
    James BJ; Strohbehn JW; Mechling JA; Trembly BS
    Int J Hyperthermia; 1989; 5(6):733-47. PubMed ID: 2592787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave Hyperthermia of Brain Tumors: A 2D Assessment Parametric Numerical Study.
    Redr J; Pokorny T; Drizdal T; Fiser O; Brunat M; Vrba J; Vrba D
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of improved microwave interstitial antennas for local hyperthermia.
    Sathiaseelan V; Leybovich L; Emami B; Stauffer P; Straube W
    Int J Radiat Oncol Biol Phys; 1991 Mar; 20(3):531-9. PubMed ID: 1995539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The characterization of semirigid coaxial antennae for interstitial and endocavitary microwave hyperthermia].
    Erb J; Klautke G; Seegenschmiedt HM; Engelbrecht R; Schaller G; Sauer R
    Strahlenther Onkol; 1994 Nov; 170(11):654-64. PubMed ID: 7974181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of Phased Antenna Array Applied in Focused Microwave Breast Hyperthermia.
    Wang X; Xi Z; Ye K; Gong Z; Chen Y; Wang X
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metamaterial based AMC backed archimedean spiral antenna for in-vitro microwave hyperthermia of skin cancer.
    Kaur K; Kaur A
    Electromagn Biol Med; 2023 Oct; 42(4):163-181. PubMed ID: 38156657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A patch antenna design for application in a phased-array head and neck hyperthermia applicator.
    Paulides MM; Bakker JF; Chavannes N; Van Rhoon GC
    IEEE Trans Biomed Eng; 2007 Nov; 54(11):2057-63. PubMed ID: 18018701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An adaptive microwave phased array for targeted heating of deep tumours in intact breast: animal study results.
    Fenn AJ; Wolf GL; Fogle RM
    Int J Hyperthermia; 1999; 15(1):45-61. PubMed ID: 10193756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance characteristics of a helical microwave interstitial antenna for local hyperthermia.
    Wu A; Watson ML; Sternick ES; Bielawa RJ; Carr KL
    Med Phys; 1987; 14(2):235-7. PubMed ID: 3587145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heating pattern of helical microwave intracavitary oesophageal applicator.
    Liu RL; Zhang EY; Gross EJ; Cetas TC
    Int J Hyperthermia; 1991; 7(4):577-86. PubMed ID: 1919153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.