BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 32956531)

  • 21. [Design and implementation of an improved invasive antenna for microwave hyperthermia].
    Xue Q; Sun B; Chen L; Wang J
    Zhongguo Yi Liao Qi Xie Za Zhi; 2010 Nov; 34(6):427-30. PubMed ID: 21360981
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Large stationary microstrip arrays for superficial microwave hyperthermia at 433 MHz: SAR analysis and clinical data.
    Ryan TP; Backus VL; Coughlin CT
    Int J Hyperthermia; 1995; 11(2):187-209. PubMed ID: 7790734
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimization of a beam shaping bolus for superficial microwave hyperthermia waveguide applicators using a finite element method.
    Kumaradas JC; Sherar MD
    Phys Med Biol; 2003 Jan; 48(1):1-18. PubMed ID: 12564497
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The potential of time-multiplexed steering in phased array microwave hyperthermia for head and neck cancer treatment.
    Cappiello G; Drizdal T; Mc Ginley B; O'Halloran M; Glavin M; van Rhoon GC; Jones E; Paulides MM
    Phys Med Biol; 2018 Jul; 63(13):135023. PubMed ID: 29863491
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A compact microwave patch applicator for hyperthermia treatment of cancer.
    Chakaravarthi G; Arunachalam K
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5320-2. PubMed ID: 25571195
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Technical aspects of microwave thermotherapy.
    Vrba J; Lapes M; Oppl L
    Bioelectrochem Bioenerg; 1999 May; 48(2):305-9. PubMed ID: 10379544
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two 27 MHz Simple Inductive Loops, as Hyperthermia Treatment Applicators: Theoretical Analysis and Development.
    Kouloulias V; Karanasiou I; Koutsoupidou M; Matsopoulos G; Kouvaris J; Uzunoglu N
    Comput Math Methods Med; 2015; 2015():751035. PubMed ID: 26649070
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spiral microstrip hyperthermia applicators: technical design and clinical performance.
    Samulski TV; Fessenden P; Lee ER; Kapp DS; Tanabe E; McEuen A
    Int J Radiat Oncol Biol Phys; 1990 Jan; 18(1):233-42. PubMed ID: 2298626
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of six microwave antennas for hyperthermia treatment of cancer: sar results for single antennas and arrays.
    Ryan TP
    Int J Radiat Oncol Biol Phys; 1991 Jul; 21(2):403-13. PubMed ID: 2061117
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The distribution of power and heat produced by interstitial microwave antenna arrays: I. Comparative phantom and canine studies.
    Denman DL; Elson HR; Lewis GC; Breneman JC; Clausen CL; Dine J; Aron BS
    Int J Radiat Oncol Biol Phys; 1988 Jan; 14(1):127-37. PubMed ID: 3335448
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The impact of the waveguide aperture size of the 3D 70 MHz AMC-8 locoregional hyperthermia system on tumour coverage.
    Kok HP; de Greef M; Wiersma J; Bel A; Crezee J
    Phys Med Biol; 2010 Sep; 55(17):4899-916. PubMed ID: 20679701
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experimental assessment of phased-array heating of neck tumours.
    Gross EJ; Cetas TC; Stauffer PR; Liu RL; Lumori ML
    Int J Hyperthermia; 1990; 6(2):453-74. PubMed ID: 2324581
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cardiac tissue ablation with catheter-based microwave heating.
    Rappaport C
    Int J Hyperthermia; 2004 Nov; 20(7):769-80. PubMed ID: 15675671
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of complex bolus-tissue load configurations on SAR distributions from dual concentric conductor applicators. Specific absorption rate.
    Rossetto F; Stauffer PR
    IEEE Trans Biomed Eng; 1999 Nov; 46(11):1310-9. PubMed ID: 10582416
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Three-dimensional theoretical temperature distributions produced by 915 MHz dipole antenna arrays with varying insertion depths in muscle tissue.
    Mechling JA; Strohbehn JW; Ryan TP
    Int J Radiat Oncol Biol Phys; 1992; 22(1):131-8. PubMed ID: 1727110
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Theoretical limits of SAR distributions of a four-element square array of dipole-type antennas.
    Fan CJ; Leybovich LB; Devanna WG; Kurup RG
    Med Phys; 1994 Nov; 21(11):1665-70. PubMed ID: 7891625
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Research on the hyperthermia-therapy performances of invasive microwave antennas].
    Yang GS; Liu YH; Wang JQ
    Zhongguo Yi Liao Qi Xie Za Zhi; 2002 Mar; 26(3):170-1, 217. PubMed ID: 16104297
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pre-clinical evaluation of a microwave planar array applicator for superficial hyperthermia.
    Diederich CJ; Stauffer PR
    Int J Hyperthermia; 1993; 9(2):227-46. PubMed ID: 8468507
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Beam shaping for microwave waveguide hyperthermia applicators.
    Sherar MD; Liu FF; Newcombe DJ; Cooper B; Levin W; Taylor WB; Hunt JW
    Int J Radiat Oncol Biol Phys; 1993 Apr; 25(5):849-57. PubMed ID: 8478236
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient focusing of microwave hyperthermia for small deep-seated breast tumors treatment using particle swarm optimization.
    Elkayal HA; Ismail NE
    Comput Methods Biomech Biomed Engin; 2021 Jul; 24(9):985-994. PubMed ID: 34132607
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.