BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 32956805)

  • 1. Deriving new soft tissue contrasts from conventional MR images using deep learning.
    Wu Y; Li D; Xing L; Gold G
    Magn Reson Imaging; 2020 Dec; 74():121-127. PubMed ID: 32956805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging.
    Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH
    Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiparametric mapping in the brain from conventional contrast-weighted images using deep learning.
    Qiu S; Chen Y; Ma S; Fan Z; Moser FG; Maya MM; Christodoulou AG; Xie Y; Li D
    Magn Reson Med; 2022 Jan; 87(1):488-495. PubMed ID: 34374468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct synthesis of multi-contrast brain MR images from MR multitasking spatial factors using deep learning.
    Qiu S; Ma S; Wang L; Chen Y; Fan Z; Moser FG; Maya M; Sati P; Sicotte NL; Christodoulou AG; Xie Y; Li D
    Magn Reson Med; 2023 Oct; 90(4):1672-1681. PubMed ID: 37246485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accelerating quantitative MR imaging with the incorporation of B
    Wu Y; Ma Y; Du J; Xing L
    Magn Reson Imaging; 2020 Oct; 72():78-86. PubMed ID: 32610065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep learning-based convolutional neural network for intramodality brain MRI synthesis.
    Osman AFI; Tamam NM
    J Appl Clin Med Phys; 2022 Apr; 23(4):e13530. PubMed ID: 35044073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multimodal MRI synthesis using unified generative adversarial networks.
    Dai X; Lei Y; Fu Y; Curran WJ; Liu T; Mao H; Yang X
    Med Phys; 2020 Dec; 47(12):6343-6354. PubMed ID: 33053202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generalizable synthetic MRI with physics-informed convolutional networks.
    Jacobs L; Mandija S; Liu H; van den Berg CAT; Sbrizzi A; Maspero M
    Med Phys; 2024 May; 51(5):3348-3359. PubMed ID: 38063208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MR-self Noise2Noise: self-supervised deep learning-based image quality improvement of submillimeter resolution 3D MR images.
    Jung W; Lee HS; Seo M; Nam Y; Choi Y; Shin NY; Ahn KJ; Kim BS; Jang J
    Eur Radiol; 2023 Apr; 33(4):2686-2698. PubMed ID: 36378250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep-Learning-Based Contrast Synthesis From MRF Parameter Maps in the Knee Joint.
    Nykänen O; Nevalainen M; Casula V; Isosalo A; Inkinen SI; Nikki M; Lattanzi R; Cloos MA; Nissi MJ; Nieminen MT
    J Magn Reson Imaging; 2023 Aug; 58(2):559-568. PubMed ID: 36562500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A deep learning approach for synthetic MRI based on two routine sequences and training with synthetic data.
    Moya-Sáez E; Peña-Nogales Ó; Luis-García R; Alberola-López C
    Comput Methods Programs Biomed; 2021 Oct; 210():106371. PubMed ID: 34525411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MR-based synthetic CT generation using a deep convolutional neural network method.
    Han X
    Med Phys; 2017 Apr; 44(4):1408-1419. PubMed ID: 28192624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstruction of multicontrast MR images through deep learning.
    Do WJ; Seo S; Han Y; Ye JC; Choi SH; Park SH
    Med Phys; 2020 Mar; 47(3):983-997. PubMed ID: 31889314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine Segmentation of Pelvic Anatomy in MRI-Assisted Radiosurgery (MARS) for Prostate Cancer Brachytherapy.
    Sanders JW; Lewis GD; Thames HD; Kudchadker RJ; Venkatesan AM; Bruno TL; Ma J; Pagel MD; Frank SJ
    Int J Radiat Oncol Biol Phys; 2020 Dec; 108(5):1292-1303. PubMed ID: 32634543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-Time Deep Pose Estimation With Geodesic Loss for Image-to-Template Rigid Registration.
    Mohseni Salehi SS; Khan S; Erdogmus D; Gholipour A
    IEEE Trans Med Imaging; 2019 Feb; 38(2):470-481. PubMed ID: 30138909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multimodal imaging-based material mass density estimation for proton therapy using supervised deep learning.
    Chang CW; Marants R; Gao Y; Goette M; Scholey JE; Bradley JD; Liu T; Zhou J; Sudhyadhom A; Yang X
    Br J Radiol; 2023 Dec; 96(1152):20220907. PubMed ID: 37660372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A preliminary attempt to visualize nigrosome 1 in the substantia nigra for Parkinson's disease at 3T: An efficient susceptibility map-weighted imaging (SMWI) with quantitative susceptibility mapping using deep neural network (QSMnet).
    Jo M; Oh SH
    Med Phys; 2020 Mar; 47(3):1151-1160. PubMed ID: 31883389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneously optimizing sampling pattern for joint acceleration of multi-contrast MRI using model-based deep learning.
    Seo S; Luu HM; Choi SH; Park SH
    Med Phys; 2022 Sep; 49(9):5964-5980. PubMed ID: 35678739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep model-based magnetic resonance parameter mapping network (DOPAMINE) for fast T1 mapping using variable flip angle method.
    Jun Y; Shin H; Eo T; Kim T; Hwang D
    Med Image Anal; 2021 May; 70():102017. PubMed ID: 33721693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep-learned short tau inversion recovery imaging using multi-contrast MR images.
    Kim S; Jang H; Jang J; Lee YH; Hwang D
    Magn Reson Med; 2020 Dec; 84(6):2994-3008. PubMed ID: 32479671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.