These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 32956985)

  • 1. Keep your head down: Maintaining gait stability in challenging conditions.
    Thomas NDA; Gardiner JD; Crompton RH; Lawson R
    Hum Mov Sci; 2020 Oct; 73():102676. PubMed ID: 32956985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physical and perceptual measures of walking surface complexity strongly predict gait and gaze behaviour.
    Thomas NDA; Gardiner JD; Crompton RH; Lawson R
    Hum Mov Sci; 2020 Jun; 71():102615. PubMed ID: 32452433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Look out: an exploratory study assessing how gaze (eye angle and head angle) and gait speed are influenced by surface complexity.
    Thomas NDA; Gardiner JD; Crompton RH; Lawson R
    PeerJ; 2020; 8():e8838. PubMed ID: 32280566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A role for the lower visual field information in stair climbing.
    Miyasike-daSilva V; Singer JC; McIlroy WE
    Gait Posture; 2019 May; 70():162-167. PubMed ID: 30875603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visual information from the lower visual field is important for walking across multi-surface terrain.
    Marigold DS; Patla AE
    Exp Brain Res; 2008 Jun; 188(1):23-31. PubMed ID: 18322679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binocular vision and the control of foot placement during walking in natural terrain.
    Bonnen K; Matthis JS; Gibaldi A; Banks MS; Levi DM; Hayhoe M
    Sci Rep; 2021 Oct; 11(1):20881. PubMed ID: 34686759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Where do we look when we walk on stairs? Gaze behaviour on stairs, transitions, and handrails.
    Miyasike-daSilva V; Allard F; McIlroy WE
    Exp Brain Res; 2011 Mar; 209(1):73-83. PubMed ID: 21188360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age and beta amyloid deposition impact gait speed, stride length, and gait smoothness while transitioning from an even to an uneven walking surface in older adults.
    Zukowski LA; Fino PC; Levin I; Hsieh KL; Lockhart SN; Miller ME; Laurienti PJ; Kritchevsky SB; Hugenschmidt CE
    Hum Mov Sci; 2024 Feb; 93():103175. PubMed ID: 38198920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gaze coordination with strides during walking in the cat.
    Zubair HN; Chu KMI; Johnson JL; Rivers TJ; Beloozerova IN
    J Physiol; 2019 Nov; 597(21):5195-5229. PubMed ID: 31460673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the environment on gait and gaze behavior in older adult fallers compared to older adult non-fallers.
    Zukowski LA; Iyigün G; Giuliani CA; Plummer P
    PLoS One; 2020; 15(3):e0230479. PubMed ID: 32196529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The margin of stability is affected differently when walking under quasi-random treadmill perturbations with or without full visual support.
    Wang Z; Xie H; Chien JH
    PeerJ; 2024; 12():e16919. PubMed ID: 38390385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gaze shifts during dual-tasking stair descent.
    Miyasike-daSilva V; McIlroy WE
    Exp Brain Res; 2016 Nov; 234(11):3233-3243. PubMed ID: 27401474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual-vestibular interaction during standing, walking, and running.
    Demer JL; Viirre ES
    J Vestib Res; 1996; 6(4):295-313. PubMed ID: 8839825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vision and vestibular adaptation.
    Demer JL; Crane BT
    Otolaryngol Head Neck Surg; 1998 Jul; 119(1):78-88. PubMed ID: 9674518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acceleration patterns of the head and pelvis when walking are associated with risk of falling in community-dwelling older people.
    Menz HB; Lord SR; Fitzpatrick RC
    J Gerontol A Biol Sci Med Sci; 2003 May; 58(5):M446-52. PubMed ID: 12730255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptations in horizontal head stabilization in response to altered vision and gaze during natural walking.
    Cromwell RL; Pidcoe PE; Griffin LA; Sotillo T; Ganninger D; Feagin M
    J Vestib Res; 2004; 14(5):367-73. PubMed ID: 15598991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age-related differences in walking stability.
    Menz HB; Lord SR; Fitzpatrick RC
    Age Ageing; 2003 Mar; 32(2):137-42. PubMed ID: 12615555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gaze shifts and fixations dominate gaze behavior of walking cats.
    Rivers TJ; Sirota MG; Guttentag AI; Ogorodnikov DA; Shah NA; Beloozerova IN
    Neuroscience; 2014 Sep; 275():477-99. PubMed ID: 24973656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel video-based paradigm to study the mechanisms underlying age- and falls risk-related differences in gaze behaviour during walking.
    Stanley J; Hollands M
    Ophthalmic Physiol Opt; 2014 Jul; 34(4):459-69. PubMed ID: 24836288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age and falls history effects on antagonist leg muscle coactivation during walking with balance perturbations.
    Thompson JD; Plummer P; Franz JR
    Clin Biomech (Bristol, Avon); 2018 Nov; 59():94-100. PubMed ID: 30216784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.