These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 32957094)

  • 21. Economic Convenience of Hybrid Thermoelectric-Photovoltaic Solar Harvesters.
    Narducci D; Lorenzi B
    ACS Appl Energy Mater; 2021 Apr; 4(4):4029-4037. PubMed ID: 34056555
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-performance flat-panel solar thermoelectric generators with high thermal concentration.
    Kraemer D; Poudel B; Feng HP; Caylor JC; Yu B; Yan X; Ma Y; Wang X; Wang D; Muto A; McEnaney K; Chiesa M; Ren Z; Chen G
    Nat Mater; 2011 May; 10(7):532-8. PubMed ID: 21532584
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermionic transport across gold-graphene-WSe
    Rosul MG; Lee D; Olson DH; Liu N; Wang X; Hopkins PE; Lee K; Zebarjadi M
    Sci Adv; 2019 Nov; 5(11):eaax7827. PubMed ID: 31723602
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Correlating Thermionic Emission with Specific Surface Reconstructions in a <100> Hydrogenated Single-Crystal Diamond.
    Dominguez-Andrade H; Anaya J; Croot A; Cattelan M; Twitchen DJ; Kuball M; Fox NA
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):26534-26542. PubMed ID: 32463648
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Theoretical Analysis of Two Novel Hybrid Thermoelectric-Photovoltaic Systems Based on Cu₂ZnSnS₄ Solar Cells.
    Lorenzi B; Contento G; Sabatelli V; Rizzo A; Narducci D
    J Nanosci Nanotechnol; 2017 Mar; 17(3):1608-615. PubMed ID: 29693983
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Raising the Working Temperature of a Triboelectric Nanogenerator by Quenching Down Electron Thermionic Emission in Contact-Electrification.
    Xu C; Wang AC; Zou H; Zhang B; Zhang C; Zi Y; Pan L; Wang P; Feng P; Lin Z; Wang ZL
    Adv Mater; 2018 Sep; 30(38):e1803968. PubMed ID: 30091484
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Printable nanostructured silicon solar cells for high-performance, large-area flexible photovoltaics.
    Lee SM; Biswas R; Li W; Kang D; Chan L; Yoon J
    ACS Nano; 2014 Oct; 8(10):10507-16. PubMed ID: 25272244
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microbead-separated thermionic energy converter with enhanced emission current.
    Littau KA; Sahasrabuddhe K; Barfield D; Yuan H; Shen ZX; Howe RT; Melosh NA
    Phys Chem Chem Phys; 2013 Sep; 15(34):14442-6. PubMed ID: 23881241
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-efficiency solar thermoelectric conversion enabled by movable charging of molten salts.
    Chang C; Wang Z; Fu B; Ji Y
    Sci Rep; 2020 Nov; 10(1):20500. PubMed ID: 33235267
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Potential impact of ZT = 4 thermoelectric materials on solar thermal energy conversion technologies.
    Xie M; Gruen DM
    J Phys Chem B; 2010 Nov; 114(45):14339-42. PubMed ID: 20196558
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A nanophotonic solar thermophotovoltaic device.
    Lenert A; Bierman DM; Nam Y; Chan WR; Celanović I; Soljačić M; Wang EN
    Nat Nanotechnol; 2014 Feb; 9(2):126-30. PubMed ID: 24441985
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface Photovoltage-Induced Ultralow Work Function Material for Thermionic Energy Converters.
    Schindler P; Riley DC; Bargatin I; Sahasrabuddhe K; Schwede JW; Sun S; Pianetta P; Shen ZX; Howe RT; Melosh NA
    ACS Energy Lett; 2019 Oct; 4(10):2436-2443. PubMed ID: 31633034
    [TBL] [Abstract][Full Text] [Related]  

  • 33. First principles calculations of solid-state thermionic transport in layered van der Waals heterostructures.
    Wang X; Zebarjadi M; Esfarjani K
    Nanoscale; 2016 Aug; 8(31):14695-704. PubMed ID: 27314610
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New and old concepts in thermoelectric materials.
    Sootsman JR; Chung DY; Kanatzidis MG
    Angew Chem Int Ed Engl; 2009; 48(46):8616-39. PubMed ID: 19866458
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comprehensive Review on Thermoelectric Electrodeposits: Enhancing Thermoelectric Performance Through Nanoengineering.
    Wu T; Kim J; Lim JH; Kim MS; Myung NV
    Front Chem; 2021; 9():762896. PubMed ID: 34993175
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancing solar cell efficiency: the search for luminescent materials as spectral converters.
    Huang X; Han S; Huang W; Liu X
    Chem Soc Rev; 2013 Jan; 42(1):173-201. PubMed ID: 23072924
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lanthanum hexaboride for solar energy applications.
    Sani E; Mercatelli L; Meucci M; Zoli L; Sciti D
    Sci Rep; 2017 Apr; 7(1):718. PubMed ID: 28386129
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hybrid Nanofluids as Renewable and Sustainable Colloidal Suspensions for Potential Photovoltaic/Thermal and Solar Energy Applications.
    Rasheed T; Hussain T; Anwar MT; Ali J; Rizwan K; Bilal M; Alshammari FH; Alwadai N; Almuslem AS
    Front Chem; 2021; 9():737033. PubMed ID: 34646812
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Performance of Hybrid Energy Devices Consisting of Photovoltaic Cells and Thermoelectric Generators.
    Park Y; Cho K; Yang S; Park T; Park S; Song HE; Kim SM; Kim S
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8124-8129. PubMed ID: 31999087
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermoelectric Converters Based on Ionic Conductors.
    Wu X; Gao N; Jia H; Wang Y
    Chem Asian J; 2021 Jan; 16(2):129-141. PubMed ID: 33289291
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.