These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 32957177)
1. Tension-compression asymmetry in the mechanical response of hydrogels. Drozdov AD; Christiansen JD J Mech Behav Biomed Mater; 2020 Oct; 110():103851. PubMed ID: 32957177 [TBL] [Abstract][Full Text] [Related]
2. Material properties in unconfined compression of gelatin hydrogel for skin tissue engineering applications. Karimi A; Navidbakhsh M Biomed Tech (Berl); 2014 Dec; 59(6):479-86. PubMed ID: 24988278 [TBL] [Abstract][Full Text] [Related]
3. Features of the volume change and a new constitutive equation of hydrogels under uniaxial compression. Zhang YR; Xu KJ; Bai YL; Tang LQ; Jiang ZY; Liu YP; Liu ZJ; Zhou LC; Zhou XF J Mech Behav Biomed Mater; 2018 Sep; 85():181-187. PubMed ID: 29906673 [TBL] [Abstract][Full Text] [Related]
4. A continuum model for tension-compression asymmetry in skeletal muscle. Latorre M; Mohammadkhah M; Simms CK; Montáns FJ J Mech Behav Biomed Mater; 2018 Jan; 77():455-460. PubMed ID: 29028597 [TBL] [Abstract][Full Text] [Related]
5. Mechanical viability of a thermoplastic elastomer hydrogel as a soft tissue replacement material. Fischenich KM; Lewis JT; Bailey TS; Haut Donahue TL J Mech Behav Biomed Mater; 2018 Mar; 79():341-347. PubMed ID: 29425534 [TBL] [Abstract][Full Text] [Related]
6. Dynamic response of immature bovine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response. Park S; Ateshian GA J Biomech Eng; 2006 Aug; 128(4):623-30. PubMed ID: 16813454 [TBL] [Abstract][Full Text] [Related]
7. Highly mechanical properties nanocomposite hydrogels with biorenewable lignin nanoparticles. Chen Y; Zheng K; Niu L; Zhang Y; Liu Y; Wang C; Chu F Int J Biol Macromol; 2019 May; 128():414-420. PubMed ID: 30682469 [TBL] [Abstract][Full Text] [Related]
8. Mechanical characterization of human brain tissue. Budday S; Sommer G; Birkl C; Langkammer C; Haybaeck J; Kohnert J; Bauer M; Paulsen F; Steinmann P; Kuhl E; Holzapfel GA Acta Biomater; 2017 Jan; 48():319-340. PubMed ID: 27989920 [TBL] [Abstract][Full Text] [Related]
9. Experimental verification of the roles of intrinsic matrix viscoelasticity and tension-compression nonlinearity in the biphasic response of cartilage. Huang CY; Soltz MA; Kopacz M; Mow VC; Ateshian GA J Biomech Eng; 2003 Feb; 125(1):84-93. PubMed ID: 12661200 [TBL] [Abstract][Full Text] [Related]
11. Molecular mechanisms in deformation of cross-linked hydrogel nanocomposite. Mathesan S; Rath A; Ghosh P Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():157-167. PubMed ID: 26652360 [TBL] [Abstract][Full Text] [Related]
12. Effects of exogenous crosslinking on in vitro tensile and compressive moduli of lumbar intervertebral discs. Chuang SY; Odono RM; Hedman TP Clin Biomech (Bristol, Avon); 2007 Jan; 22(1):14-20. PubMed ID: 17005305 [TBL] [Abstract][Full Text] [Related]
13. The influence of the fixed negative charges on mechanical and electrical behaviors of articular cartilage under unconfined compression. Sun DD; Guo XE; Likhitpanichkul M; Lai WM; Mow VC J Biomech Eng; 2004 Feb; 126(1):6-16. PubMed ID: 15171124 [TBL] [Abstract][Full Text] [Related]
14. Functional compressive mechanics of a PVA/PVP nucleus pulposus replacement. Joshi A; Fussell G; Thomas J; Hsuan A; Lowman A; Karduna A; Vresilovic E; Marcolongo M Biomaterials; 2006 Jan; 27(2):176-84. PubMed ID: 16115678 [TBL] [Abstract][Full Text] [Related]
15. Atomistic simulation of nanomechanical properties of Alzheimer's Abeta(1-40) amyloid fibrils under compressive and tensile loading. Paparcone R; Keten S; Buehler MJ J Biomech; 2010 Apr; 43(6):1196-201. PubMed ID: 20044089 [TBL] [Abstract][Full Text] [Related]
16. Numerical investigation of the influence of pattern topology on the mechanical behavior of PEGDA hydrogels. Jin T; Stanciulescu I Acta Biomater; 2017 Feb; 49():247-259. PubMed ID: 27856282 [TBL] [Abstract][Full Text] [Related]
17. Computational analysis of cartilage implants based on an interpenetrated polymer network for tissue repairing. Manzano S; Poveda-Reyes S; Ferrer GG; Ochoa I; Hamdy Doweidar M Comput Methods Programs Biomed; 2014 Oct; 116(3):249-59. PubMed ID: 24997064 [TBL] [Abstract][Full Text] [Related]
18. Determination of mechanical and hydraulic properties of PVA hydrogels. Kazimierska-Drobny K; El Fray M; Kaczmarek M Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():48-54. PubMed ID: 25579895 [TBL] [Abstract][Full Text] [Related]
19. Anisotropic strain-dependent material properties of bovine articular cartilage in the transitional range from tension to compression. Chahine NO; Wang CC; Hung CT; Ateshian GA J Biomech; 2004 Aug; 37(8):1251-61. PubMed ID: 15212931 [TBL] [Abstract][Full Text] [Related]
20. Uncoupling shear and uniaxial elastic moduli of semiflexible biopolymer networks: compression-softening and stretch-stiffening. van Oosten AS; Vahabi M; Licup AJ; Sharma A; Galie PA; MacKintosh FC; Janmey PA Sci Rep; 2016 Jan; 6():19270. PubMed ID: 26758452 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]